.................

Y Y

° e
AD
FUNDING PROJECT NO. IT665702D625 -;*-M;
TECOM PROJECT (TRMS) NO. 7—-CO-RDO-EP1-004
TEST ACTIVITY REPORT NO. USAEPG-FR-1263 —
TEST SPONSOR: US ARMY TEST AND ‘ : P
EVALUATION COMMAND 9
~
()
ﬁ o«
-« METHODOLOGY INVESTIGATION
$ FIMAL REPORT .
() PROGRAM FLOW ANALYZER . ”m;
< VOLUME 1T S
...A {
BY
LESLIE F. CLAUDIO
AUGUST 1984 . N

& K003010900 | .
S - - DTIC

_:._1 DISTRIBUTION UNLIMITED E L E CT E .‘ -. ““““““]
. SEP1 21964 .
(%]
5 ° .

US ARMY ELECTRONIC PROVING GROUND
Fort Huachuca, Arizona 85613-7110 };-

84° 09 040

APPENDIX E

PFA A-LEVEL SPECIFICATION

E-1

-~ e -
-

PROGRAM FLOW ANALYZER
A-LEVEL SPECIFICATION
(REVISED)

Accession For

NT1S GRA:I
DTIC TAB
Usznnounced
Justificatio

TE————

By
instribution[\
Avallability Codes

7 avail end/or
bDist | Special

a

il |

JANUARY 1984
USAEPG

TABLE OF CONTENTS

Paragraph

1. Scope. L] L] - * L] . L .
2. Applicable Documents .
Government Documents
Requirements v ¢ ¢ o &
System Definition.
PFA General Description.
System/Interface Diagram
External Interface . .
Internal Interface . . .
Software Standards File.
Master File. . « « « . &
User Files o« « « o o « &
Host Operating System ., . .
Govermment Furnished Property
Operational and Organizational
Characteristics « ¢« ¢ ¢ ¢ o o &
Performance Characteristics .
Program Structure Analysis.
Data Flow Analysis.
Finite State Analysis . . .
Error Analysis . b s e e e s
Program Logic Analysis. c o o s o o o
Software Quality Analysis « o« « « &« &
Software Change Analysis. « « « « + &
Documentation Development and Review,
Physical Characteristics. . « « . &
Reliability
Maintainability e s e o o s e o s e
Transportability. « ¢ ¢« ¢« ¢ o« & o «
Design and Construction ,
Workmanship « e o e o »
Human Performance/Human Engineering
Documentation L] L] L] * . L[] L] L] L] L * -
Specifications. « « ¢ ¢ ¢ ¢ o & « &
Supporting Operatinnal Doc..antation
LOGISEICS & o o o o o o o o o ¢ o o o
Facilities and Facility Equipment .
Personnel and Training. « « « « o &
Personnel ¢« o« ¢« ¢« ¢ o o o o &
Training' L] - -* L] L] L] * [] L] ;
Functional Area Characteristics
Encoding Function
.l Processing. « o« « o o o o &
o2 OQutputs & ¢ ¢« ¢ o ¢ o o o @

(2]

.

—
e o o o
e s o o
¢« o o s

w
.

NN NNNNRONN N NN it 1 e 3t et ot i 2 gk pd i

L] L]] - L] L] * . L]

L] L]
. L] . . L] L) - L L] L[] L) L]

gaou-o-.oonooo

o
[1J

TS e & 8 & e ° o ° ® & ¢ e+ o
S o & ¢ & ¢ ~"e & ¢ ¢ & * & & = 6 ¢ s @

Pe Youm |

® o 6 o ¢ O e ¢ ¢ & o @ s & 6 & 2 ¢ o

PWNNNNDNON A -
.
WNNN N -
.
WA -

s ¢ & ¢ @ & & o o @

ot

e o ® o o N LKe o o ¢ o 06 o 0 @ & s e o
-1}

L]
Q122 LN b =t b b it b b b i

¢ o & o ¢ & “J e & & & e & ¢ & & & o s
® o & 8 0 ¢ " e & & 2 2 2 8 # s s »0»
* % & & & o ¢ o 0 4 ° ¢ & ¢ 8 " e o v @
¢ & O g @ . e LI [[2 4 * ® 8 0 o @ .
® o & ¢ % o ©* o & ¢ o ® 0 Q4 & s ¢ ¢ 9
® 0 & s & & " e & 5 8 P 4 " & s @

¢ e & o ¢ N e ¢ o & ¢ © s 6 8 06 s e @
® o 8 ¢ o T Ccte © o ¢ o & o €6 & & o o o

. o & o
e« o o o

L]

s 5 & 8 o & & &
WO ~NODN & Wwp

.
«~ & o @& g & o ¢ o & ¢ * 2t o & ¢ * s * & & & & o ¢ 9

s ¢ @ €& ¢ & 3 P 3 & 2 ¢ s P @ T & & e S ¢ & & b e v @

vvvvv

-

.
N -

L] * [] o Y
L] [] L]
- N

.
N -

SNNNSNOOTOOO DB e WWNON N

<
b ot b b ek b ok b st 3
HOO COOOOOWOVWWWWWONN IRAUITUIUIULE W W LW W W LW W R R NP R b bt b ot ot it ®

W LW W W LW W W W W LW W W W W W W W LW LW LW WL W L) W W W LW W W WL WWWW
.

. 6 & & &6 2 & o & 8 & o s 3 o o & o
e & & o & & & 6 ® ¢ & 6 & 8 e o ° a2 o

® & & & ¢ v & o * & & b & 9
¢ ¢ 8 o % 4 & & v e o v o &
*® 8 e e 0 0 8 4 ¢ o ¢ 8 s @
® o ® 4 8 & 8 o & e 0 8 ¢ @
e ¢ s o 8 & 8 2 0 o &t o @
® 0 e o 0 0 0 e e e v o @
* 5 & o ¢ & s & s s e e
e o % & 9 0 e ¢ s 9 8 & @
*« 8 & & ¢ & ¢ S & o ° 0
® o 0 o e ¢ 4 0 0 0 e e o
¢ &€ ¢ 6 6 5 9 o ¢ o 4 & o

e e o & o @
. L] * L] L L]
e« & 8 o o e o

Paragragh

File Management Functicn.
1 Processing., « v v v v 4 v 4 .
.2 QUutputS & v o & ¢ o o o o o o
Analysis and Reporting Function .
.J7.3.1 Processing. « « o o o o o
. .2 Qutputs « v ¢« o ¢ o o o o &
. Quality Assurance Provisions. .
. General
. Responsibility for Tests. . .
. Special Tests and Examinations .

« & o o
e e © o o

.1 Unit- and Module-Level Testing
.2 Software Integration Testing .
.3 System-Level Testing

Quality Conformance Inspections . .
. Freparation for Delivery.

N Db dwwwwww

TABLES

Table 1 Verification Cross Reference Index

i1

* e+ ® s s e & 8 & o 0 » & o ¢

® e * o & &+ s 8 6 s s @ ° ¢ o

® e © 8 & e e s & e @ s ¢ e o

® e ® o & o & & S e e+ & O ¢

* & ® e & e & ¢ * s & o

® o ® e © 5 e 9o ©® & 6 o s o o

¢ o ® 3 & o ® o © o @

4 & =

e o & e & o+ o o ° a »

® e & s & 8 ® 3 ¢ 9 T e

@ w & @ 8 @8 6 ¥ & 8 e . = o o

. e & 6 e s o & & e . =

15

/ - :
1{ SCOPE
&

~This specification establishes the performance, design, development, and
test requirements for the Program Flow Analyzer (PFA) system., PFA is a
software analysis system that shall interpret and translate source language
programs into attributes which ¢i icterize the design of the programs. The
attributes shall then be processea to provide an analysis of the program based
on selected PFA requirements. This specification provides the user
requirements for a software analysis tcol to support the software development
process. Many of these requirements have not matured to the point of
practical application, This document should serve as a living document to
evolve as software engineering matures. <r

2. APPLICABLE DOCUMENTS ‘ .

The following documents form a part of this specification to the extent
herein specified. In the event of a conflict between the documents referenced
herein and the contents of this specification, the contents of this specifica-
tion shall be considered as superseding r~equirements. K

2.1 Geverrment Documents

Standards

Military ;

MIL-STD-490 Military Standards Specification '
Practices, 30 October 1968

MIL-STD-1679 Military Standard Weapon System

Software Development, 1 December 1978

Other Publications

USAEPG Program Flow Analyzer Trade-Off Analysis

3. REQUIREMENTS
3.1 Svstem Definition

The PFA is a software system which interprets and translates source langu-
age programs into data files which represent the design of the software
program being analyzed.

3.1.1 PFA General Description

The PFA is a tool used for the analysis of a software program in order to
identify software quality, program structure, and procram maintainability.
The design of the PFA shall include the following functional areas:

a. Program Structure Analysis
b. Data Flow Analysis

¢. Finite State Analysis

d. Error Analysis

e. Program Logic Analysis

f. Software Quality Analysis
g. Software Change Analysis

k. Documentation Development and Review

3.1.2 System/Interface

The following paragraphs identify and describe the external and internal
interfaces for the PFA system.

3.1.2.1 External Interface

File management and some segments of analysis and reporting use inter-
active commands. Files from previous runs shall be archived and used for com-
parison with files from new runs. The user shall supply, on a file, the
source data to be analyzed. All functions shall generate repcrts to be
printed.

3.1.2.2 Internal Interface

A1l functions of the system shall be independent and shall interface
through the data files., The following files shall be used for functional
interface.

3.1.2.2.1 Software Standards File

This file is created by the user and is used by analysis and reporting.
The information contained in the software standards file shall specify
standards for comparison Lo the software under test by software quality
analysis. .

3.1.2.2.2 Master File

The master file contains all information cn the structure of the system
being analyzed. It is created by the encoding function, maintained by file
management, and used by the analysis and reporting function, The master file
may be archived, and archived master files may serve as inputs to the analysis
and reporting function,

a

e 3.1.2.2.3 User Files

User files (e.g., Selection File) are used for additional, user-defined
requirements in analysis and reporting.

3.1.2.3 Host Operating System

The host computer shall be driven by the support software operating system i
peculiar to the machine being used for PFA, The operating system with all its
utility routines (i.e., file manager, editor, math/statistical package, tape
input/output (1/0) handlers, disk 1/0 handlers, and language compiler) shall
be available ir order that a request for services can be provided through the
use of operating system directives. The host computer shall also be capabie
of backing up the PFA system files to tape.

L J

R B

3.1.3 Government Furnished Property {Target Hardware)

Initial implementation of the PFA shall be on the DEC-10 and VAX 11/780
systems at Fort Huachuca. Delivered software should be portable to other com-
puters.

3.1.4 Operational and Organizational Concepts

| TR

The mission of PFA in relation to other systems under development is to
assess the quality of the software system under development and to provide
information for testing that software system.

o]

Anticipated use of PFA will be at testing installations to include Post
Deployment Software Support Centers (PDSSC's). PFA shall also be useable by
developers.

LI
} ST
[T P

R |

3.2 Characteristics

L

3.2.1 Performance Characteristics

PFA shall read a representation of the system to be analyzed, maintain a
master data base file containiny parameters of that system, perform analysis,
and generate reports on those parameters,

A e e
[N

~3.2.1.1 __Program Structure Analysis

Program structure analysis should consist of several subfunctions:

a. Subroutine Call Structure Chart. A subroutine call structure chart
shall show the subroutire call hierarchy, from the highest level routine to -
L= lowest level routine, External and recursive routines should also be iden- '
RN tified, '

ﬁ;r,

b. HIPO Charts. A HIPO chart shall be generated for each module in the
system being analyzed. The HIPO chart should contain the name of the module,
a list of variables input to each program step, a list of subroutines called
by each program step, a short description of each program step, and a list of
variables output from each program step,

c. Execution Flow Diagram. An execution flow diagram shall provide a
graphic representation of module control coupling and exacution flow within
each module of the software being analyzed. This graphic representation
should be in the form of a bubble chart, Tnese graphics should be machine
generated and should show the control structure of the software unit under
test.

d. Path Analysis. Path analysis shall loock at all paths based on a
node-branch diagram for the program segment and provide a list of all paths
and path quantifiers, i.e., times, statement counts, and shortest or longest
path. The path analysis shall also identify most common path lengths used,
loop identification which describes the depth of nesting used, and path jumps
into and out of loops. Path analysis shall also find the critical paths
through the module.

3.2.1.2 Data Flow Analysis.

Data flow analysis should consist o) several subfunctions which perform
the following analysis and provide the appropriate reports:

a. Data Flow Diagram. A data flow diagram shall provide graphic repre-
sentation of data flow between modules of the software being analyzed. This
graphic representation should be in the form of a bubble chart with variables
itemized on connecting lines showing directional data flow. These graphics
should be machine generated vusing a plotter.

b. Module Coupling Analysis. Module coupling is a metric that shall
provide information on the design of the target code. Module coupling is a
metric for defining module interdependence for the sharing of control and
data. Module coupling is based on intermodule control and data exchange, The
control and data coupling between each module and every other module can be
established and a numeric value can be assigned for each module-to-module
relationship. The metric can then be used to report the coupling strength of

~ the system under test,

c. Module Strength Analysis. Module strength (also known as cohesion) is
another metric for defining module interdependance and functional design that
shall provide information on the design of the target code. When the
intramodule strength has been determmined, a numeric value can be assigned.

d. Program Stadility Analysis. Module coupling and module strength shall
be used to calculate program stability, a software metric that describes the
dependency of each module and its relationship with all other program modules.
The program stability metric will report the probability for which a change in
module X will have an effect in module Y,

f

e. Module-Level Data Flow Analysis. Module-level data flow analysis
shall show the data flow between each step of execution in each module. This
should be a graphic presentation similar to the data flow diagram in item a.

f. Critical variable Analysis. A critical variable analysis shall be
used to find which variables are used on the critical path of the module and
ranks variables as to their criticality within the module. '

g. Global Cross-Reference. A global cross-reference shall list all]
global variables used in the system, alphabetically and by the module in which
they are used.

3.2.1.3 Finite State Analysis

Finite-state modeling should be used for locating deadlocked code,
infinite loops, unexpected halts, and areas with oscillating states (cyclic
actions or processing with transient intermediate states).

3.2.1.4 Error Analysis

Error analysis should determine (see paragraph 3.2.1.2) tne effects of
errors in data flowing between the modules. This should give a comprehensive
picture of how and where the system being analyzed may fail.

3.2.1.5 Program Logic Analysis

Program logic analysis should consist of three subfunctions:

a. Simulation/Modeiing Inputs Geneiration. The PFA shall be capable of
generating a simplified module structure by combining units and paths within
units. The structure shall be processable to produce input to a simulation
language. The structure shall be capable of tracking input/output operations
for each module and the variables which are affected by the decisions in the
model design.

b. Interface to Commercially Available Tools. Commercially available
tools should be evaluated to determine what analysis reports are available and
what their inherent capabilities are in order to enhance the PFA system with
their attributes or use their outputs to complement the PFA analysis reports.,
Interface programs should then be designed to extract and prucess information
generated by the commercially available tools.

c. Symbolic Execution Analysis. Dynamiz symbolic execution shall simu-

late the execution of each molule and attempt tn execute all possible paths
through each module. This should provide an exhaustive test of each module.

3.2.1.6 Software Quality Analysis

The software quality analysis (SQA) function should consist of these sub-
functions:

. "

L)

f . S tab
-rl s~‘;..,..;;

o]

a. Software Profile, The software profile subfunction shall be capable
of accepting user-defined software quality standards for the purpose of com-
paring the current program with these standards (e.g., MIL-STD-1679).

The software profile subfunction should include the following gquantifiable
data provided by the encoder function:

1. Number of documentation comments in the information prologue of
module.

2. Number of documentation comments embedded in ihe body of the
module.

3. Number of lines ir the module containing more than one executable
statement.

4. Number of executable statements per procedure.

5. Number of declaration (nonexecutable, non-comment) statements per
module,

6. Number of control statements per module.

These metrics and others, either alone or in calculations, shall be used
to determine whether or not a particular module meets the standards set by the
user. The SQA shall also provide a summary of standards met and violated by
the modules in the system being analyzed.

b. Complexity Analysis. Complexity measures shall be used to determine
how simple or complicated a module is, either on an absolute scale or relative
to other modules. Conplexity analysis should be imp’emented to determine as
many different complexity measures for each module analyzed as possible.

€. Quality Metrics Analysis. Quality metrics other than complexity
measures shall be used to provide qualitative information about each module in
the system being analyzed. These metrics may include line and comment counts
as used in the software profile report, Halstead's measures, or other metrics.

3.2.1.7 Software Chanaz Analvsis

Software change aralysis shall reflect the maturity and reliability of the
software under analysis and should consist of these subfunctions:

a. Patch Analysis. vratch analysis shall include a comparison of master
files of different program versions and shall identify where structure and
data have changed and shali report the percent of change.

b. System Configuration Change Analysis. A system configuration audit
shall be produced by a comparison of the system structure for all versions de-
veloped during the life cycle of the system.

|

3.2.1.8 Documentation Development and Review

Documentation development and review should consist of these subfunctions:

a. Comment Processing, Comment processing shall read program source code
containing specifically formated commencs. These comments will supply
information to be used to automate documentation,

b. Program Design Language Interface. Program design language (PDL)-to-
PFA interface programs should extract data from PDL reports and databases.
These data will be compared to data contained in a PFA master file for the
code to determine if the specification is consistent with the code and to
evaluate the code and specifications for correctness and completeness.

c. User-Defined Report Generator. A user-defined report generator should
be used to generate custom reports defined by the user., The report generator
shall be able to read the master file or any other file used for PFA inter-
face. A capability of reading report and data files gonerated by other com-
mercially available programs should also be provided.

3.2.2 Physical Characteristics

Not applicable.

3.2.3 Reliability

PFA shall conform to the following limits on frequency and severity of
sof tware 2rrors taken from 5,10.3.1 and 5.8.5.2 of MIL-STD-1679:

a. The number of unresolved software errors (excluding documentation
errors) shall not exceed the following:

Severity Limits
Priority 1 and 2 (high) Zero
Priority 3 (medium) One per 70K of machine instruction

words or fraction thereof.

Priority 4 and 5 (low) One per 35K of machine instrustion
words or fraction thereof.

b. Intermittent errors shall be included in the count of software errors
and receive no special consideration.

¢. The number of unresolved technical errors in all of the deliverable
documentation shall not exceed the sum of three, plus one for every 25K of

SRR [
e e

Cete .
et L

aa man Al

Y r.'v*‘-.v mwe

vm"

.y

e

machine instructions or fraction thereof. For example, for a program having
300K machine instructions: 3 + 12 = 15 allowable documentation errors.

d. A1l software errors discovered during the software quality test shall
be documented.

e. The following is an explanation of the levels of software error
severity:

Priority 1 - An error which prevents the accomplishment of an oper-
ational or mission essential function in accordance with official requirements
(e.g., causes a program stop), which interferes with an operator or mission
essential function, or which jeopardizes personnel safety.

Priority 2 - An error which adversely affects the accomplishment of
an operational or mission essential function in accordance with official re-
quirements <o as to degrade performance and for which no alternative work-
around solution exists; or which interferes with an operator to the extent
that the operator adversely affects the accomplishment of an operational or
mission essential function so as to degrade performance and for which no
alternative work-around solution exists, (Reloading or restarting the program
is not an acceptable work-around solution.)

Priority 3 - An error which adversely affects the accomplishment of
an operational or mission essential function in accordance with official re-
quirements so as to degrade performance and for which there is a reasonable
alternative work-around solution; or which interferes with an operator to the
extent that the operator adversely affects the accomplishment of an oper-
ational or mission essential function so as to degrade performance and for
which there is a reasonable alternative work-around solution. (Reloading or
restarting the program is not an acceptable work-around solution).

Priority 4 - An error which is an operator inconvenience or annoyance
and does not affect a required operational or mission essential function.

Prioritz 5 - A1l other errors.

3.2.4 Maintainability

PFA shall be maintained and updated on the basis of new requirements not
outlined in this specification. Each program change shall include a test and
verification phase along with the appropriate documentation changes.
Quantitative estimates shall be given for the following maintenance
considerations:

a. Time and level of technical skill needed to design a functional
module,

b. The number and extent of impacts caused to existing PFA subprograms by
the substitution of a new subprogram for a pre-existent one and by the
integration of an entirely new subprogram into the PFA.

Il s - mme PO

AL KRNI

1®

L Deansaisfe

0

3.2.5 Transportability

The PFA shall be designed as a general-purpose software tool, capable of
being transported to other computer systems and of being maintained for future
software evaluation requirements of tactical command and control communication
electronic computer systems, The software shall operate on commercially
available hardware and operating system software located at other government

installations,

3.3 Design and Construction

3.3.1 Workmanship

The DFA shall be a software system whose functions are composed of com-
puter programs., The computer programs shall be designed in a modular, hier-
archically structured manner, The design shall provide the flexibility for
transporting the program to other machines and a growth potential for expan-
sion of additional software test capabilities that can accommodate future
tactical computer systems. The coding shall be performed in such a manner as
to ensure that the programs can be easily read, understood, tested, and main-
tained. The program source code listings shall contain sufficient documen-
tation to provide meaningful explanations of the processing performed by each
function. The design of the software shall be implemented in functional
modules which, if modified, will have little to no impact on other modules.
Each program shall run independently of the others,

3.3.2 Human Ferformance/Human Engineering

PFA shall have ergonomically optimized display format and shall allow easy
and noncritical recovery from operator input errors.

3.4 Documentation

The following paragraphs describe the required documentation that shall be
delivered with the PFA.

3.4.1 Specifications

Appropriate specifications shall be developed under the guidelines of
MIL-STD-1679. :

3.4.2 Supporting Operational Documentation

Supporting documentation for the operation of PFA shail include a mainte-
nance manual and user's manual, containing descriptions of the software system
and functional details on control and operations for each subsystem.

PN

B U - ol e W e m e = ..
g PR L - v L e e PN

3.5 Logistics

3.5.1 Facilities and Facility Equipment

The PFA shall operate on the resources provided by the USAEPG system
control facility.

3.6 Personnel and Training

3.6.1 Personnel

PFA shall require a programmer familiar with the use of the VAX 11/78Q VMS
operating system command directives and a working knowledge of the system
editor in an interactive processing mode.

3.6.2 Training
On-the-job training for the operation of PFA shall be handled c¢n an inter-

active basis on the YAX 11/780 interactive termiqal, following guidelines in
the PFA user's manual.

3.7 Functional Area Characteristics

The following paragraphs specify the functional area characteristics re-
quired for each of the PFA functional areas defined in paragraph 3.1.

3.7.1 Encoding Function

The modules of the encoding function shall perform the following sub-
functions:

a. Processing of input data,
b. Error processing and reporting.
t. Master file generation,

d. Listing file generation,

3.7.1.1 Processing

Processing for all subfunctions of the encoding function will be performed
in interactive mode.

10

3.7.1.2 Qutputs
The encoding function will generate the following outputs:

b.

Master file.

Program source listing file.

3.7.2 File Management Function

Fiie management shall be performed using the editor and file maragement
facilities provided by the commercial operating system.

3.7.2.1 Processing

A1l editing and other processing shall be done in interactive mode.

3.7.2.2 Qutputs

File management shall generate the following outputs:

a.

b.

c.

Error messages.
Updated master file.

Subsets of the master file.

3.7.3 Analysis and Reporting Function

The modules for analysis and reporting shall perform the following sub-

functions:
a. Program structure analysis,
b. Data flow analysis
c. Finite state analysis.
d. Error analysis.
e. Software quality analysis.
f. Program logic analysis
g. Software change analysis
h. Documentation development and review

11

3.7.3.1 Processing

A1l of the above subfunctions shall run in interactive mode.

3.7.3.2 OQOutputs

There shall be at least one report generated for each of the subfunctions
1" 307 o3o

4, QUALITY ASSURANCE PROVISIONS

4.1 General

This section outlines the quality assurance provisions to be followed dur-
ing the design, development, and verification of PFA. The verification of PFA
and its functional subsystems shall be consistent with the phased delivery and
implementation schedules. The paragraphs below outline the tests and the re-
sponsibility for the tests of verification as well as the criteria for quality
conformance inspections.

The verification of the software program shall be accomplished through
system-level testing, unit- and module-level testing, and software integration .
testing. A delivery acceptance demonstration, based on the system-level test,
shall be conducted.

Test documentation relating to quality assurance (QA) shall be generated
and maintained. Documentation shall be informal in nature, consisting of
memos that document specific QA monitors' meetings, program design review,
coding { implementation), walkthroughs, etc. This documentation shall be made
available on request. QA information saved/stored shall include, as a
minimum, the following:

a. Software problems--system integration
b. Software problems--module integration
¢. Operations, user manual discrepancies
d., Project status/accountability data

The user manual for this software shall also be subject to review and ap-
proval.

Acceptance of the software specification delivery shall be based upon the
satisfactory demonstration of its performance and reliability. The delivery
acceptance demonstration of the system program shall consist of system-level
testing designed to verify that the overall requirements of the system and its

12

interface with its subsystems are met. Records on all software problems en-
countered during testings and on data relating to the resolution and repair of
these problems shall be maintained. The system delivery shall not be con-
sidered accepted until all reported discrepancies have been corrected.

4.1.1 Responsibility for Tects

Unless otherwise specified in the contract or task order, the supplier
shall be responsible for the performance of all inspection requirements as
specified herein., Except as otherwise specified, the supplier may utilize his
own facilities or any commercial computer facility acceptable to the govern-
ment. The government reserves the right to perform any of the inspections set
forth in the specification where such inspecticns are deemed necessary to as-
sure that supplies and services conform to prescribed requirements.

4.1.2 'Special Tests and Examinations

The following tests shall be performed by the contractor in the verifica-
tion of PFA, : -

4.1.2.1 Unit- and Module-level Testing

Unit- and module-level testing shall be performed to ensure the cor-
rectness of each program module prior to software integration testing. Each
unit of each module shall he tested independently to verify its compliance
with the appropriate module-level requirements. This testing shall be ac-
complished on an informal basis, using informal test documentation. All test
failures shall be documented upon occurrence. Units and modules shall be re-
tested whenever a software correction is implemented. Compliete path testing
shall be made at the unit level. Unit-and module-level testing may be done
concurrently with software integration testing.

4.1.2.2 Software Integration Testing

Software integration testing shall be performed to verify the performance
of larger program segments and module interfaces. This testing shall be ac-
complished during the phased integration of the program modules. As each mod-
ule is integrated into the system program, that module's interfaces with the
other integrated modules shall be tested. This testing shall be accomplished
informally using internal software test pians and procedures. When a test
failure occurs, it shall be documented, and integration testing shall be sus-
pended until the problem is successfully corrected.

4.1.2.3 System-level Testing

The system program shall be tested on the system level to verify that the

13

overall requirements of the system and its subsystems are met, Records shall
be maintained crn all software nrublems encountered during testing and on the
resolution of these prublems,

4.2 Quality Conformance Inspections

This paragraph presents quality conformance inspection criteria to be ap-
plied during the design, development, and verification of PFA, The quality
conformance inspections shall include reviews of the following categories of
documentation: design documents (specifications), supporting documentation
(operational guide or user manual), program }istings (module source code), and
status accountability reports. A System Design Review (SDR) shall be held to
discuss the coftware requirements as presented in this specification. The de-
Vivery of both the performance and design specifications shali be followed by
design reviews. An SDR shall also be held to discuss the functional design as
presented in the program perfommance specification. A Critical Design Revicw
(CDR) shall be held to discuss the detailed implementation-level design as
presented in the program design specification., The design review shall be
scheduled approximately three weeks after delivery of each specification. Ad-
ditional interim design reviews may also be scheduled.

A Verification Cross-Reference Index (VCRI) (Table 1) shall be used to
provide for the direct identification of each Section 3 requirement and the
associated method for verifying that the requirements has been satisfied. An
N/A in the VCRI paragraph list indicates that there is no verifiable re-
quirement in the Section 3 paragraph,

The quality conformance inspections Jf the program listings shall include
several separate procedures. First, a review shall be made of the module
listings and the program design specifications to verify that a module listing
exists for each module identified in the program design specifications and to
verify that each module for which a moduie listings exists was identified in
the program design specification. The listings for each separately assembled
or compiled module shall then be reviewed, using the following criteria:

a. The module shall contain the complete processing for that function or
subfunction, to pemit modification of that function/module without requiring
modification of other modules.

b. The madule listing shall contain a prologue comment section whizh
identifies the module, the system, the module inputs and outputs, error con-
ditions ard error processing, and a brief description of the module's func-
tion.

¢. The module listing shall contain comments tc describe the inputs,
processing, and outputs for each routine and subroutine.

d. The program flow within the module listing shall be consistent with
the program flow defined in the program design specification.

Quality conformance inspection shall also include the review of status re-
ports and monitoring of the status and accountahility information throughout

14

- er e e = e = ew

Kaobaje)
TSTETETNTREY)

wV» v o n N

[7¢}

a QO = -

V/N
V/N

a o o o o @ o

V/N
V/N

POYIaN

algesy|ddy 3JoN=y/N

e3e(Q 3531 JO MILA3Y pue 353)=]

M3 A3y ubpsag=y
‘ Bu}pasal uojjeabaju] asemios=§
: :Ka06aje)
spsAjeuy aunjoniis wedbouad
$2135}433004RY) 3IURWIOJIId
SJ}3sjJaldesey)
s3dajuo) |ruojjezjuebug pue jeuojjedsadg
(aJ4empaey 3abae]) Ajuadosgd paysjuangd JuUdWUIIA0Y
wa3sAs Gupjesadg 3soy
saty4 Jasn
3l14 J3ISEN
3Ll4 spJepuels asemyjos
350})J3ju] |RUJIU]
3J0J493U] {eUJdIN]
weubeyq adejuaju] /waysAs
uot3diJudsag |eJd3uay y4id
Uo13jujjag wayshs

SJuauRJ | nbay

aweN ydesbesed

X3ONI 3ONIYILIY-SSOYZ NOJI'VIIJIH3A °1 378Vl
L]

uojeJdisuowdg=Q
uoy3dadsul=]

:poy3ay
188 &F A >
1r2'e

rAf>

U &>
ere

A A
gezrzie
Ak Ak 28 8>
1'zre e
AR A i
1°2°1°¢
e

188 &>

1'e

£

*oN ydedabeded

15

[7¢]
o -

wn vy
I T T N Y — B

v
—

Tiobaie) POUIaN
ST ETNTWEY)

MaLABY ubrse(=Y
fupq3sa] vojpjedbazul IJeml130S5=S
:K406a3e)
Bujaaaujbul uewny/adouewdodad uewny
dpysuewyJ oM
uo}3onJ43su0) pue ubysaq
K3y 1qeydodsued |
A3111qe|peAy
£3pL1qeueluey
A3111qe} 19y
$I2}35})4930040Y) (e21SAYd
M| AdY pue Juawdo|3aAa(uo|lezuswnio(
sysAeuy cbuey) adem3jos
spsAjeuy A3j|en)) aaemyjos
spsAeuy 21607 wedboud
sisAjeuy Jodd3l
spsAeuy aje3s agul4

sisAieuy moLd eieQ

°A
ejeQ 1s3) Jo

aweN ydedbeded

(panuj3uo)) X3ANI JONIYIIIY-SSOUI NOILVIIJIYMIA °1 378Vl

P

A

ueljedisuowag=Q
uo)3dadsui=]
*POY3an
Al

et

€€

9°2°¢

§°e2°¢t

v°2°¢

5P A X

22t

g 1°¢°¢t
Lrieece
9°1°2°¢
§°1°2°¢
peicee
ge17ete

A G A >

*ON ydedbeded

16

S e e
S 1
3 1
s 1
S 1
S 1
S 1
S 1
S a
3 a
=== V/N
3 a
=== v/N
Y I
Y .
Y I
£a0baje) POY3IaN
T TECEIFIRED

MaLA3Y ubisag=y

buirysal uojjesbaju] auemyjos=g
: tKu0baje)
sinding

bulssasouyg

uoj3oung juawabeuely a4

sinding

buLssasodyg

uoLloung buipoougy

SJ13S{J4ajdedey) eaJy [euotlduny
butugeday

{duuos4ad

Butupea) (3uvossay

juawdinb3 A31(4oey pue sarypjioey
s213s¢601

uojjejuawndoQg feuojjesadg Guijaoddng
suopjeay ytLsadsg

uoj3e3uaundog

awey ydedsbedeyd

(panuijuo)) x3aN1 wuzwxumu«nmwnmu NOLLVIIJIN3IA °1 378Vl

.lp

214201 1ddy oN=y/N .
BleQ 1S3 JO MILA3Y pue 3153]=]
_ uotjed3suowag=Q

uol 3oadsuf=1
*POY I3

22 Le
SEATAL
2Lt
'L
Tee
e
Le
2°9°€
1'9°¢
9°€
I°S°€
5°€
2ve
Uve
e

*ON ydedbeded

17

S e P T e e e b e s

d|gedt|ddy j0N=y/N
e3le(3S9] JO MILABY pue 3Is3=]

MaLAa3y ubLsag=y 4 uotjedlsuowag=(Q

burisa] uotieabaju] auemios=§ uoL3dadsul=]

:Auobaje) IR EIN

S 1 sinding PR AL

S 1 buissadouy 1°€°L°¢

S 1) uot3oung butluoday pue sisAjeuy AL

Kiobaje) POYIIMN awey ydedbedey *ON ydedbouey
UoL3edLiidsp

(panui3uod) Xx3IaNI 3INIYISI4-SS wo NOTLYJI4T¥3A 1 37gvl

DN ' ST,
PRI ’ .-

each phase of the software development effort. As a minimum, the following
status information shall be provided for each module and module subroutine de-
fined in the program design specifications:

a. Coding effort started.

b. Coding effort completed.

c. Module-level testing started.

d. Module-level testing completed.

e. System-level testing started.

f. System-level testing completed.

A record shall also be maintained of all software problems encountered
during testing and of how each was resolved. For each software specification
delivery, a list of the functional capabilities provided in that specification

delivery shall be established and the testing/verification status of each
shall be maintained.

5. PREPARATION FOR DELIVERY

The preparation for the PFA delivery shall include the following steps:
a. Generation of source code listings of all programs being deiivered.
b. Generation of a machine readable software source,

c. Updated operational guides, if required. All software deliveries

shall be in accordance with the phased development and implementation schedule
agreed upon,

19

!

APPENDIX F

PFA USERS MANUAL :

fo]

-
—

F-1 -

lo}

PROGRAM FLOW ANALYZER
USERS MANUAL

JANUARY 1984

-

L

L] L] .
£ W

[P I Y)

Sy On & [FS AN o

. []
L N —

RN N PN NN NN

NNNUO e

¢ o & o ¢ & 8 o e o o o o
WWWwwwwhNrPN NN -

WWWWWWWwWwWwwWwwwww

PROGRAM FLOW ANALYZER
USERS MANUAL
TABLE OF CONTENTS

GENERAL
Purpose of the Users Manual
Project References
Terms and Abbreviations
Security and Privacy

SYSTEM SUMMARY
System Application
System Qperation
System Configuration
System Organization
Encoder {AUTOxxxx)
Comnent Processor (COMPRO)
Structure, Timing, Analysis, Modeling
Program {STAMP)
Software Profile Program (SOFTPRO)
System Structure Comparator (SYSTRUCT)
Patch Analysis Program (PATCHANA)
Per formance
Data Bases
General Description of Inputs, Processing, Outputs
Inputs
Processing
Outputs

STAFF FUNCTIONS RELATED TO TECHNICAL OFERATIONS
Initiation Procedures
Input Requirements

Source File
Standards File.
Master File
Selection File
Terminal Inputs
Program Operations
COMPRO
STAMP
SOFTPRO
SYSTRUCT
PATCHANA

o
[>1]
DO NN [l ol el ol T ey

OO N,

—

N

-y

-

-
A

T "

e l‘

1
Pt gt b et b poed b pd ot et
WoOo~NO O AR WN-=O

Table

2-1

LIST OF FIGURES

Use of PFA in the Acquisition Life Cycle

PFA Use in Support of Software Change Control
and Implementdtion

PFA End User Activities

Structure of the PFA System

A Sample OFA-Commented Source Program

Standards File

Master File

COMPRO Data Flow

Master File Qutput by COMPRO

STAMP Data Flow

STAMP External Procedures Chart

STAMP Structure Chart

STAMP Function List

STAMP Module List

STAMP HIPO Chart

SOFTPRO Data Flow

SOFTPRO Standards Violations Details Report

SOFTPRO Standards Violations Summary Report

SOFTPRO Quality values

SYSTRUCT Data Flow

SYSTRUCT Report

PATCHANA Data Flow

PATCHANA Report

LIST OF TABLES

Inputs and Qutputs of PFA Programs

Dt e SIC N

LR R I S T e e

TABLE OF CONTENTS (CONTINUED)

Page
3.4 Utilization of System Outputs 49
3.4.1 STAMP Reports 49
3.4.2 SOFTPRO Reports 51
3.4.3 SYSTRUCT Report 51
3.4.4 PATCHANA Report 51

APPENDICES

A Terms and Abbreviations A-1
B Master File and Standards File Descriptions B-1

—

SECTION 1. GENERAL

1.1 Purpose of the Users Manual. The objective of the Users Manual for the

Program Flow Analyzer [PFA) system, TECOM Project Number 7-CO-RDO-EP1-004, is to
provide non-ADP personnel with the information necessary to use the PFA system
effectively.

This manual reflects the current implementation of the PFA system on the VAX
computer, The capabilities described in this document represent a subset of the
planned system as defined in the PFA A-level specification,

1.2 Project References. PFA is a software analysis system. It is made up of

various programs which identify software quality, structure, modification, and
features which aid or interfere with program maintainability and reliability.

PFA is sponsored by the US Army Electronic Proving Ground (USAEPG) at Fort
Huachuca, Arizona,

The following documents are applicable:

a. USAEPG, Methodclogy Investigation Proposal--Program Flow Analyzer, March
1979.

b. USAEPG, Program Flow Analyzer A-level Specification, 4 April 1980.

c. USAEPG, Program Flow Analyzer Detailed Work Plan, 30 October 1982.

d. Leslie Claudio, Methodology Investigation Final Report--Program Flow An-
alyzer, 30 October 1982.

e. USAEPG, PLRS DT-II Final Report, December 1981,

f. Department of Defense, D0D-STD-7935.1-S, Automated Data Systems Doc-
umentation Standards, 13 September 1977.

g. Department of Defense (Navy), MIL-STD-1679, Weapon System Software De-
velopment, 1 December 1978,

1.3 Terms and Abbreviations. Terms, abbreviations, acronyms, and definitions

are given in appendix A,

1.4 Security and Privacy. The PFA system is unclassified and is currently set

up to 1dentify all output as unclassified. To process classified information
the program must be modified.

[X 4

S L.

SECTION 2. SYSTEM SUMMARY

2.1 System Application. PFA is a software tool for automating software anal-
yses which are normally performed manually. These analyses are time consuming
and are often omitted.

PFA provides system structure, module structure, software quality assess-
ment, and system-level and module-level comparison of versions of software. PFA
can also be used to generate system documentation,

Document review of code and desigr-level specifications, software quality
metrics, and comparison of different versions of software are normally performed
manually, PFA generates reports that are comparable to design specifications;
this reduces the effort needed to trace from code to design specifications, PFA
canputes and compares software quality metrics to user-selected software quality
standards, thereby automating the software quality assessment. PFA compares two
versions of software, in an overall comparison and then a comparison of selected
modules, and generates reports which clearly locate changes.

2.2 System Operation. The PFA system can be used by the developer, the
independent verification and validation (V&V) contractor, the independent de-
velopment test and evaluation (IDT&E) activity, the independent evaluation
activity, and the post-deployment software support (PDSS) activity. Figure 2-1
shows the relationship of the various users of PFA within the acquisition life
cycle. The shaded areas show when PFA can be used and who might use it.

PFA reduces the effort required to document a system. Using COMPRO or a
full capability encoder with STAMP provides the developer with a procedure call
structure chart and HIPO charts for each procedure. These can be used to create
or update program documentation CPCIs.

PFA reduces the effort for documentation reviews. The system-specific en-
coder and the STAMP program provide the Independent V&V and development tester
with procedure call structure charts and HIPO charts which are comparable with
the developer's program documentation CPCIs., Lists of procedures called which
are external to the developer's coftware, a 1ist of the highest lavel procedures
to compare against the functions described in function specifications, and an
alphabetical directory of all procedures supplied by the developer are also
provided.

PFA reduces the effort required to check software against standards and
software quality metrics. The system-specific encoder and the SOFTPRO program
provide the developer and tester with a list of procedures, pointing out the de-
viations from software standards and acceptable software quality measures for
each procedure,

PFA reduces the effort required to monitor changes between old and new
versions of software. The system-specific encoder and the SYSTRUCT and PATCHANA
programs provide the developer, configuration controller, and testers with an
audit of changes between two versions of the same software from the system level
and the procedure level. Figure 2-2 shows an assignment of configuration
control responsibilities during various periods in the acquisition cycle.

Figure 2-3 shows the relationship of the various user activities to the
individual programs of the PFA system.

31943 3417 vot3psynboy ay3 u}p yid jo asp

*1-2 34nbyi4

*asn yd4d 83edlpul seade papeys ay)

ajueudjulel pue uojjedadg

jJoddns M/s juawAoldag-3sod

s3sa] teuojiedadg

$359] juawdo |8Aaq

dnoyg 3 ¢ 101

VT

dnoJg Agp juapuadapu]

| Z{]
\ZZLTTTTT
Y

————

o

U0{39npoJg

burica] adueidaddy waysAS
3$3] pue uopjedbaju]
1s3] jiun pue 6uipo)
Suotjedt j1oads :mpmma
suoijedLjidads (euopjouny

S3udWadnbay pue sue|d

J0o32JeJdiuo) ‘Jadolaasq

3SYHd NOILONGOYd

ISVHd IN3Wd0T3A3Q

ISVHd
L1dIINGI

19

SY35N vdd

3SVHd

- .

-

uojjejuawa|dw] pue |043u0) abuey) auem3jos jo 3soddng up 3sp yi4d *2-2 3Jnbi4

{49sn pua ‘a3wo3snd) pJeog |0J4u0) uolednbyjuo) wayshs -~ g39s

(v03d2e43u0d *dadoy3Aap) pJeog |o43u0] abuey) (euuaajul - 9991

8208 8201 8391 Jabeuey 104)-423u] - abueyd ubisag
3J4EM) JOS
03154S

CRES - 8201 8201 Jabeuey 12dJ-eJ3u] - abueys ubisag
124D

8225 9201 8201 Jabeuey JdJ-eJ3u] - abueyd ubisag

3d)
€933 4371 Jabeuey | Jawwesbodd abueyds 2po)
uojiedbajul
NOI1IN30yud 1531 NOLLIVY9IINI | 1S31 1INN A¥0931VI J9NVHD
IINYIAIIIY | WIISAS ONY 3000 | 3SVHd

8328

8331
$359) judwdo|aArs(Q

Juaudbeury) uoryeanbijuo)
Juawabeury pue uopjedaadp

4308

4221

$353| Judwdo [and(
Juawabeueyy uodjieandiuo)
3ddueuajujey pue uoijedadp

A¥A 3uspuadapu]
$353) 3judswdo |3A3(Q
1531 9ouer3daddy WAZFAY

aourudjujey pue uogieaddg
ARA Juapuadapu]

s3s2] juawdo|aaag

3$9] 9oue3daday wa3sAs
3$9) pue uojjeabajul
3531 3jun pue buipo)

SILILALIIY 43S pul vid

SL¥0d3 YNVHILYd
S1y¥043Y LINYLSAS
S1¥0d3y 01405
S140d3Y dWV1S

*€-¢ a4nbyy

43000N3

 04dW02

324n0§
ademysc

433s
8321
aoueuaULRL uOLIRANGL JUO)
DOUPUIRULLY; PUR uOjIRUDd(
AZA 3udpuadapui

3$8) 9oueldaddy wasAs
3159) pue uotjeuabajuj

3sal 3iun pue bulpo)

924n0§

a40M] JOS

1S0L F1Un pue buipe)

2.3 System Configuration. PFA is currently implemented on a DEC VAX/VMS sys-

tem, model 11/780, and requires a dis~ and a 9-track tape drive.

2.4 System Organization. The flow of data through the system is shown in

figure 2-4, A general description of the organization of the PFA system is
provided below.

2.4.1 Encoder {AUTOxxxx). The encoder is a front-end program to the PFA sys-

tem, customized for each application to accommodate the specific machine/lan-
guage combination of the software system being analyzed, which translates com-
puter/software/language specific programs into a representation which is stored
in a data base called the master file. This master file is then read by other
PFA programs that generate reports.

2.4.2 Comment Processor (COMPRO). COMPRO extracts and processes comments for

creating documentation. COMPRO reads program source code files which contain
canments in . specific format and creates a master file which can be processed
by other PFA programns to generate reports used for program documentation. PFA
programs are commented in this manner to provide automated HIPO and structure
charts for the PFA system. A source listing of the input is also provided.

2.4.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP performs

program structure analysis. The STAMP program reads the master file and
generates reports on the overall system under analysis to aid in modeling that
system and to orovide information about the structure of that system.

2.4.4 Software Profile Program (SOFTPRO). SOFTPRO performs software quality
analysis. OSOUFTPRO reads the master file and a software standards file and
generates two reports on software standards violations.

2.4.5 System Structure Comparator (SYSTRUCT). SYSTRUCT performs analysis of

system configuration changes. JSYSIRUCT reads two master files representing dif-
ferent versions of the software system under analysis. SYSTRUCT generates a re-
port on system-level changes in the analyzed system.

2.4.6 Patch Analysis Program (PATCHANA). PATCHANA performs software patch

(souirce code change) analysis. PATCHANA reads two master files or subsets of
master files (work files) representing two versions of the software being
analyzed. Selection can be made interactively or via the selection file, wiich
contains a list of modules to be compared. The report lists the path segment
structure for both versions side by side and indicates (with codes and arrows)
the location of differences and what was changed for each version,

2.5 Performance. PFA supports various software evaluation activities by re-

ducing the e“fort required to perform those activities manually or by making
performance of those activities feasible, given constraints on time and effort.
PFA reduces effort by presenting its output in a format which is comparable to
the CPCI for the program under analysis.

To process a master file containing about 200 modules, the STAMP program
takes one hour, SOFTPRO takes about 15 minutes, and SYSTRUCT takes 30 minutes.
PATCHANA takes about two minutes per module to be compared if full master files
are used, less if work files are used.

~~~~~ T UL A, S L SRS 1




boswo'a’s"ds dra .

14043y

wo3SAS Y44 U 40 aunona}g  “H~2 auanbyy

140438 F---1  10nu1sAs |
/— III
\ 314
\ 7] sauvanvis
v/ JunLios
140434 [0 0¥dLd0S | /
’lta 'd
« \
AT !
YNNYHOLYA [—--73714 MdoM }--- iy |-—---Y 3
7] waLsw
“
i 1S3 :
300N !
140d 1y ; INILSIT
NOTLONNA /
Ly 0dIH| s
1YVH)
JUNLINULS
140434
$34n030Yd
WNYILXI

ceeeem--d INANT ¥3SN
31
9NILSI
e
’ XXXX
,x / 0Lnv 324N0S
a\ ’
\:. /
.\ “.f \\
" oudwod |




ﬁ‘

2.6 Data Bases, PFA uses two data base files, the master file and the

standards file. The master file contains cummary information on the program to
be analyzed. It is used by STAMP, SOFTPRO, SYSTRUCT, and PATCHANA to analyze
and report on program structure, maintainability, and software quality.

The standards file contains information on software standards. It is used
by SOFTPRO to caiculate and report standards violations by the program being
analyzed and by SYSTRUCT to identify software quality metrics being compared,

2.7 General Description of Inputs, Processing, OQutputs. Following is a general

"~ description of PFA inputs, data flow, and resultant outputs.

2.7.1 Inputs. Table 2-1 lists inputs for the PFA programs.

2.7.1.1 Source Files. The only PFA programs to use software source files are
an XXxX (system-specific encoders).

2.7.1.2 Standards File. The standards file is used by SOFTPRO and SYSTRUCT to

calculate and report software standards violations. The standards file de-
scribes various software standards, including such information as description,
range to be within standard, expression for calculation, Military Standard Ref-
erence, and type of standard (code or documentation). The standards file is
created in two parts. The first part is created when the encoder is written. .
It contains the descriptions of the basic standards, those standards whose
values are calculated by the encoder and output in the master file, The second
part of the standards file is created by the user any time before PFA run time.
It contains the user-defined standards, those standards which are calculated in
terms of the basic standards or other user-defined standards. These two parts
exist in the same file and may be intermixed. The name of the standards file to
be used is specified by the user, but by convention has the extension STD,

2.7.1.3 Master File, The master file, or a subset of ii, is used by STAMP,

PRO, SYSTRUCT, and PATCHANA to analyze and report on program structure,
maintainability, software quality and source ccde changes. The master file
contains summary information on the program being analyzed. This information
inciudes the module names, prologues, flow of control, subroutine calls,
variable usage, comments, entry points, and values of varying software
qualities. The master file is output by an encoder or COMPRO, The name of the
master file to be used is specified by the user, but by convention has the
extension MST,

2.7.1.4 Selection File, The selection file contains the names of the modules

in the master file to be processed by PATCHANA. [t is optional, as the module
names may also be specified at run time. The selection file may have baen
prepared manually by the user, ar it may have been output by SYSTRUCT. The
selection file output by SYSTRUCT contains the names of the modules determined
to have probable code-level changes.

2.7.1.,5 Terminal Inputs. The terminal inputs are those inputs which the user

may provide at the console., Terminal inputs are required at the beginning of
STAMP, SOFTPRO, PATCHANA, SYSTRUCT, and COMPRO runs, The program prompts for
user responses such as input file names, cutput file names, and specification of
desired reports and program options.

3 TRMCETIEE I RS




TABLE 2-1. INPUTS AND OUTPUTS OF PFA PROGRAMS

PROGRAM INPUTS QUTPUTS
COMPRO PFA Source Listings Master File

Encoder Listing

STAMP Master File External Procedures Report
Function List
Structure Charts
Module List
HIPO Charts

SOFTPRO Master File Software Standards
Standards File Violations Details
Report <

Software Standards
Violations Summary

Report §

SYSTRUCT Master File Report ;

. Standards File Selection File :
CEE- PAT CHANA Two Master Files or Subsets Report "

Selection File (Optional)




2.7.2 Processing. The flow of data between PFA programs is shown in figure

2-4. In addition, the terminal inputs to STAMP, SOFTPRO, SYSTRUCT, and PATCHANA
are used to select the analysis options and the reports to be output.

2.7.2.1 Encoder (AUTOxxxx). The encoder is a front-end program to the PFA sys-

tem which translates computer/software/language-specific programs into a rep-
resentation which is stored in a data base called the master file., This master
file is then read by other PFA programs which generate reports. The encoder is
customized for each application to accommodate the specific machine/language
combination of the software system being analyzed.

2.7.2.2 Comment Processor [COMPRO). COMPKO extracts source code ccmments for

creating documentation. COMPRO reads program source code files which contain
comments in a specific format. The information contained in these comments is
used to create a master file which can be processed by other PFA programs to
generate reports used for program documentation. PFA programs are commented in
this manner to provide automated HIPO and structure charts for the PFA system.

2.7.2.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP orovides
the program structure anatysis function. 1he STAMP program reads the master
file and generates reports on the overall system under analysis to aid in
modeling that system and to provide information about its structure. STAMP
processes the master file (PFA data base) to produce the structure charts from
the subroutine calls information in the master file. STAMP also extracts the
module names to provide module and function lists. Additionally, the extracted
function and module names are examined to determine which routines are not
defined locally, and outputs these in an external procedures report.

STAMP develops a HIPO chart based upon module information, The module name,
description, prologue comments, and path segment information (inputs, outputs,
quantifiers, node-path labels/branches, and inline com:ents) are reported from
the master file. Information on modules called and calling modules is derived
from suoroutine calls information. This process of creating the HIPQ chart is
then repeated for each module defined in the master file.

2.7.2.4 Software Profile Program (SOFTPRO). SOFTPRO provides the software

quality analysis function, It requires as input both a master file and software
standards file.

SOFTPRO takes the formulas from the standards file and data from the
software quality records of the master file and computes the values of the
software quality parameters, It then takes the ranges from the standards file
and determines which parameters are within allowable ranges. The results of the
computations are passad to the output section to generate the exception, summary
and other reports. :

2.7.2.5 System Structures Comparator (SYSTRUCT). SYSTRUCT provides analysis of

system configuration changes. SYSTRUCT reads two master files representing
different versions of the software system under analysis and generates a report
on system-level changes. These changes, determined at the module level, are
derived by examining differences in subroutine calls, number of paths, and the
software quality metrics between the two versions. This information is then
formatted into a report for each module which displays both the old and new
information and an indication of which items changed.

10

B J




o]’

2.7.2.6 Patch Analysis Program (PATCHANA). PATCHANA provides a software patch

(source code change) analysis function. PATCHANA reads two master files or sub-
sets of master files representing two versions of the software being analyzed.
A selection file which contains a 1ist of modules to be compared is also read.

The master files are exanined to locate information on the modules listed in
the selection file. Path segment informmation, for the old and new modules, is
processed to identify differences in structure, subroutine calls, variable
usage, and the three quantifiers, This information is presented in a report
which lists both versions of the module and flags the differences.

2.7.3 Outputs. Table 2-1 lists PFA program outputs.

2.7.3.1 AUTOxxxx and COMPRO. AUTOxxxx and COMPRO output master files and re-
formatted source Tistings, COMPRO's master file is based on specially formatted
comments in the input source listings.

2.7.3.2 STAMP, STAMP provides five reports, as follows:

a. The external procedures report lists each module which calls subroutines
outside the set of modules being analyzed and the name of the sub-
routines called.

b. The structure chart shows the module call hierarchy of the system and
flags external and recursive subroutines. ‘

C¢. The function list provides a list of all task-level modules in the sys-
tem, with the name of the module, a brief description, and version
information,

d. The module list contains a directory of the modulas being analyzed, ar-
ranged in alphabetical order, It also contains an indicator to signal
whether the module is cask level, subroutine level or an unusad entry
point; the top and bottom hierarchical level on which the module is
called; a brief module description; the version information; and the
page number of the source listing where the module is located.

e. The HIPO chart Tists the name of the module, a brief description, the
version information, and the page number of the source description. The
HIPO chart also includes the path segment structure of the module., Each
path segment contains the names of modules called, comnents about the
path, three quantifiers (discussed below) and the sequence number range
of the source statements which make up the path segment. The path seg-
ment information includes inputs and outpuis for the segment.

The quantifiers are user-selected values (detemnined by the particular en-
coder used) extracted fron the software being analyzed. Examples are execution
module timing, source statement counts, and machine instruction counts and are
determined by encoder design. Those items which are not available do not
prohibit processing. The STAMP program will report whatever information is
available.

11




N )i

vﬂ‘l—.v‘—‘ . 4

P~

2.7.3.3 SOFTPRO. SCFTPRO provides two reports, as follows:

a. The software profile reports fcr each module 1ist the violations of
software standards as defined by the user in the software standards
file. The violations state the standard, the value for the software
being analyzed, the pemmitted range of values, and the reference to the
regulation from which the standard is derived.

b. The profile summary contains the list of standards, the number and per-
cent of modules meeting each standard, the number and percent of modules
violating each standard, and the reference to the regulations containing
each standard. Additionally, the quality values are summarized for al}
the modules and listed individually for each module.

2.7.,3.4 SYSTRUCT, The SYSTRUCT report lists changes in variahles used by each

module, changes in software quality parameters (the ones reported by SOFTPRO),
and modules which have been added to or deleted from the current version of the
software being analyzed., The changes are of two types: those affecting exe-
cutable code and those affecting code documentation. When changes affect exe-
cutable code, a list of changed modules is generated for use by the patch an-
alysis program.

2.7.3,5 PAVCHANA. The PATCHANA report lists the path segment structure for
bcth versions side by side and indicates (with codes and arrows) the location of
differences and what was changed for each version. When structural differences
occur, the differences are flagged from their start either through the remainder
¢f the module or to the point where the structures of the two versions are con-
gruent. PATCHANA finds differences in structure, subroutine calls, variable us-
age, and the three quantifiers.




- -~

Y Ve

.-”1 Fer e erEs s

.
.

.
[,
.
.

SECTION 3. STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIONS

3.1 Initiation Procedures. The first step for using PFA for software analysis
¥s to obtain the encoder, with documentation, for the particular programming
language and computer system for which the software being analyzed is written,

The second step is to obtain the source code or compile listing for the
software under analysis on machine-readable form (tape or disk).

Next a file containing software standards to be applied to the software
under analysis must be prepared, and the encoder must be run to create the
master file.

The system manuals for the particular computer system where the PFA system
i{s being run should provide specific log-on and program running procedures.

3.2 Input Requirements. The user must obtain the source code for the system
being analyzed, in the format required by the encoder being used, or the source
code must be prepared in correct format for COMPRO if PFA is being used for
documentation,

A standards file must be prepared in a format prescribed by this document
and in accordance with the encoder design.

The user must answer the prompts output by the PFA programs, which request
the names of data and report files and processing options.

A file containing machine/language-specific source code or compiler listings
is converted to a cammon format, independent of the machine/language com-
bination, creating a master file used by the generic report programs of the PFA
system.

When COMPRO is used to extract information for documentation, the input con-
sists of specially formatted comment statements. These format statements may be
intermixed with executable statements, as encountered in a normal program,
though the latter are not essential. Input which consists entirely of the spe-
cial comment statements is similar to a program design language.

System-specific encoders (AUTOxxxx) require input which is dependent on the
specific encoder design. This input would normmally consist of the software
source code or a campiler listing of the source. Encoders may require that cer-
tain compiler options be exercised in creating the listing file (e.g., specify-
ing the option of generating an assembler-level listing).

3.2.1 Source File. Figure 3-1 is an example of a specially commented PFA
source module. The only source file documented in this manual is the PFA source
used by COMPRO to produce a master file. COMPRO processes specially formatted
comments in source code to produce the master rile,

3.2.2 Standards File. Each record in the standards file consists of eight
variable length fieids separated by semicolons. Figure 3-2 is a sample
standards file. The standards file records and fields are described in
appendix B,

13




--col“o0.0.0“0ouo.o“ouo.ﬁboo“o‘oootoooooounoo.q.oo«aooouo.uonuo
SHUGENY T INE READSTD - READ STANDARDS FILE
/ORPOSE

RFADSTD READS THE STANDARDS FILE AND STORES THE [NFCRMATION FOR
THE BASIC STANMDARDS IN THE STANDARDS TAGLE.

At PEADSTD ()

VAP [ADLE LIST

[ 3:1 - STANDARD DESCRINTION

s1v - EXPRESSION FOR CALCULATING STANDARD

(DY - STANDARD LABFL AND INDEX INTU STANDARDS TABLE
MAXY - MAXIMUM VALUE TO MEET STANDARD

MINV = MINIMUM VALUE TO MEED STANDARD

SICMIF =~ FLAC INDICATING WHETHER A CHAMNCE [N THE VALUE OF

THIS STANDARD SICNIFIES A CODE OR DOCUMENTATYION
CHANGCE IN THE MODULE (=C,D)
STANDARD - INPUT VARIABLE FOR STANDARDS FILE

sT10 = SEE STD DATA STRUCTLRE
STOREL ~ STANDARD TABLE ENTRY
S101A8 ~ GSTANDARDS® TABLE
TEMP = INPUT RECDRD FROM STANDARDS FILE
weT = FLAC INDICATING WHETHER CURRENT STANDARD 1S TO BE
REPORTED
=Q <~ DO NOT REPORT
>0 - DO REPORT
FI1LES USED.
STAMDARDS FILE - FILE SPECIFYING PROCRAM STANDARPDS

CALLS LIST

EEEREEERANERRE NI I I SR A A B R I B R A BN BN BN B BN B BN A AN ]

L2 A R XL RS2 1 22 a2 X2 o g 2 2l a2 e ol dd a2l e 22222 22 22 sl d ol 222, 2 )

“sonss

RTAD RELCORD AND CATHER DATA

INPUT STANOARD: [P, TEMP: ST, DESC. ST. WCT ST, MINV: 5T, mAXV: 5T,
21V ST.SICNIF ST, IDX. ST, STDREC: STD
outPUT N IN. TEMP: ST. IDY: ST, DESC: ST, WGET. ST, HINV- ST, maXV: 5T, CIV: ST,
SIGNIF. ST, STDREC: STD. 1DX: IN. STDTABIIDXD: STD. STDTAB: TA
CALLS. LIST

T R R R R N I A A N R R R RN RS

se8Pace
»
PEADITD N = O
STDTAB = TABLE(17)
[ 4
P31 TEMP = STANDRD : F {RETURN)
10X = LIST(TEMP. 1. %1 *) :
DESC = LIST(TEMP. 2, " ")
WGT = LIST(TEMP.D, %3 )
MINV = LIST(TEMS, &4, % ')
MAXY = LIST(TEMP, 3, % %)
RIV = LIST(TEMP. &, % *)
SIGNIF = LIST(TEMP, 7. % %)
STDREC = STDU(DESC, WGT, MINV, MAXV, GIV, NULL, SIGNLF)

.
» TEST FOR BASIC STANDARD. STORE INFORMATION FOR BASIC STANDARDS
*  IN STANDARDS TABLE. SKIP USER-DEFINED STANDARDS.
.
IDX = CONVERT(IDX. 'INTECER ‘) :F(RS1)
5TDTAB-IIDX> = STDREC : {RS1)

Figure 3-1. A Sample PFA-Commented Source Program

14

\M-1LE




3l 14 Spaepuels “g-¢ aunbyiy

121YA3W MIN ‘OdIIS 11001 1110 'ASE AUNLNA 1Y

3HNLINYLS *9dI 'S IE T 1O F(IUNLINULS NML . dOL) LNIGOTIAZG JHNLNI 0T
TALIXIIIHOD *OdI DT~ '(¥) ‘(€I 00T 08 100> SLNBIILVLIS NOILvdvI1230 O HIAWNN A
ALIX3IN4MOD ‘9dI 1D -ty) ‘(E) 0G0 !T 106 D> SINIWILVLIS NOILYHYTIO3IA JO0 HITUNN'C
TALIXITAWOD ‘0d3 D= (¥) (E) ST 0T T > SINIHILVLS NOILvEVYIIIQ JO H3IEWNAN'L
ALIXINGHOD 'OdI D!+ () "+ *(Z) “(1) 1005 T 12 '00C > SINIT 4I HITWNN'H
TALIXINIWOD 'OdT 1D 1 (6) 62 V1T 0C > ALIXITIMOD S. 3avIOH‘D

TALIXIVHWOD ‘041D (66T 11T 02 > ALIXITAMOD S, 34VION‘S

FALIXTNAWNOD *OdI DTS ITITOT > ALIXN3NANOD S, IEVIIU‘S

1IYNLINYLS ‘OdI 1S '€ 010 'E > ALIXITJWOD SLONW'S

TALIXITAWOD ‘9431 1S 1110 'C > ALIXIIIWOD SAVILSTIVH L

‘CEC ‘GLII-QLS-THII 10T = SINIOd ANINI H0 H3IQWNN 9

2y ¥ COLRT-QLSTIUIT! ‘7 'LH) '@ 00T '+°(Q) '(T) ‘6566466 '008 ' 1GILNIWWOI 3003 %00T '3
'NOTLVANIUNIOG ‘OdI Q7 °tr) "2 001 '+ ‘(C) “(T) 1664664 'CL 1T 'GILNILM0OD I3A0I %GL°C
'NOLLVINTND0A *0d3°Q 1/ “(¥) ‘2’001 '+ *(C) (D) '664666'0C '& 'AIANTMIOD 300D X0C 1D
INQILVINIWNI0G ‘9d3'Q 1 '6646 10 10 'SANIWWOD 03ACIODNA HLIM SLNIWNILVIS JO HIGHNN'C
1L °C'C ‘6L91-04S-TIW A1 00T 1012 1002 > SINIHILVLS ITAVLANIAKI JO H¥IAWNN'Y
11014665670 1O'SINIT ANIHHOI-NON J0 ¥3IEUNN'E

INOTLVANIINIOA *OdI 'Qf 16666 1010 'SANTY INFMOD WNVIE-NON JO HIGUNN'T
NOTLVINIUNICE 'S43:Q ! °(T) 6666031127021 < 900Hd NI SINIT LNIOI ‘G
NOTLVANINNIOG ‘OdI Q! " L1) 160666 109 1T 09 < SUWNd NI SINIT LHMWAD 'Y

13y 6 ‘eLFV-OQLS-THK A1 16666 10E 1T 0E € 900WHd NI SINITT LN3MWOO 'Y

15



The following describes the appropriate vocabulary for each field of a
standards file record. No field may contain a semicolon.

Field Description
Identifier Integer for basic standards (1-14)

Any other value for user-defined standards
Standards Any text

Weighting Factor p for no report on standard
1 for report on standard

Lowest Permnitted Any value
Value

Highest Permitted Any value (must be greater than lowest permitted
Value value)

Calculation Null for basic standards. A reverse Polish expres-
sion for user-defined standards. The expression
may consist of constants, the operators '+', '-',
'*'and '/', and the values of previously defined
standards, referenced by the standard's ID in
parentheses. For example, '(5),(1),/,' is a legal
expression.

Code/Documentation C for code standards
Indicator D for documentation standards

Standard Reference Any text

3.2.3 Master Fila, Figure 3-3 is an example portion of a master file. The

master file contains summary information on the modules of the program being an-
alyzed. Currently there are eleven record types in the file, each describing
one aspect of a module., These records are grouped within the master file ac-
cording to the module they describe. The aspect of a module described by each
of the record types is as follows:

—
(1]

WONIITNPRWNNE=O I F

Information

Header Record

Library Routine Definition
Task or Subroutine Definition
Listing and Version Information
Prologue Comments

Path Definition

Subroutine Calls Information
Variable Information

In-Line Comments .
Software Quality Information
Entry Point Definition

16




-4

b

€

1 4
9

1 4

2

1 4

314 a93sEy

L9v0ICy ¥Sv00CY 29908y 00 9
‘dIVLNILLANG

W1 n(._L.aDo Y03 NWNTLAND ‘U OI XINYD 'A: 07 (11ANNI) T

ZI0BYY v9v00SY Z9r08YY 00 9
‘U YLINLLLAND

IITEYALANG ‘M 103 (AKNI LGNS ‘¥ 103 XINYI ‘A 07 :(LLAMNI) I

<

[+] o
'

CY0BYY ¥FrO0SY 19¢0L¥y 008
‘G30800-a¥VH &1 ¢

3HL FY3IHM 18VLIANY NYHL T WOY¥4 S300 SIIHINT

NW-NON ¥04 d007  "ON3T ¥IAWNN W3LT SI
MR IHL LYHL NOIL1dWNSSY 3HL HLIM QIANIWNIVINE
SITYINI NH-NON HOD4 10N 40 NOTLVZIWILING

(TIVD N1 SYIALIWVHVYY ON) LLANNI

TP 00
9CY 00
€y Q0
G+ 00
FSv00
FCr00
9C¥Y00

"€~ a4nby 4

P00y
FEYO0ne
S 009
S GOy
cCroone
TS 009
TCYOOet
A1
#E
g
*€

' BNOLLVLINIT «£
3iv19 IWILINI

HI3HL OL SW3L1 03IVIdO ANV 1141009 Tiv
34VLS TWILINI HI3ML OL SW3ILI aviiand 1w
37ave AVWN3IA0 30¥Vd - 03IVIdO

NOTI1NOd VAVA HILTI4 ‘LGN - 1742aN0
NONILANG anv

MWINTLAND AB QAXIANT SWILI NILLAND

L
g
10din0 =€
»E

LN

*E
1NdNT *E
TIVY «€

‘dN-LUYLS =€
1¥ §378vL VivVa LINN 3HL SIZIIVILINT 38NAID0Hd SIHL =L
18/761/70 vOSHTJLY dNIOLYIFVPOLYY CET  #2

dN-4¥YLS LV B3TEVL VIVa LINN 3TIWINI 619018

LL10NNT=T

110NNT ~H-#

L a ] -2 § o < 1 4 o &
‘LLANMNT “3AT1LOV3S0 11x3
‘WL (MGHEGNNTI IAVEDE "W VYL ITERYINNT 11x3
‘MY AYSONYOE 'Y T0F 13A1L1IV3S ‘HI03 ONINAOW LIX3
41X3 EELQLTY $ZHOOLIY OB ET 11x3

0N 3Lv007,

€l *8
Evr00ng
Evrvr00*9
EvrO0one
Evv 00wy
FINAOW £

£/X30S IZITWILINI OL SI 3IuNA3J0Y¥d SIHL 4O 3SOdHNd IHL *€
18761/90 tvOSHIdLIY dN20LYYSYO0TY CZ1 w2
NN 31VYIQT Luvis 419018

L] ot v 1 4 ¥ [+ ] z ¢
‘YW JIGNT
11x3 ¥10000r 40V0CGE 08 'V
‘X341 430350

‘Y703 XJL430A3S ¥ 03I -ON20T ‘Y 103 'AINAIHIS 'WIHA [GNIISNSD

1 4

v

60v0G4E BOFOYSLE SOVOISE 06 O
‘Y03 'HISAIIN 'Y ‘YA ‘ANIISNSO
COVOILE ¥OV00LE T0POLBE 009
‘Y03 'HOSAIIN ‘Y "YA :QNIISNS
60V0C6E HQVO0LE T0Y0OLEBE 009

Q

0TIt

2071 -H-#

zt a1 «8
11X3 Sy 009
1I1X3 Srr 00y
cyv00 FEYOO0=G
Zyv00 EY QO
cryoo SEFOO»y
EYO0 ZCEY00r9
SEYOO0 CEYOQuy
Zvv 00 CEYOOn9?
cvv 00 CEYOO#Y

‘GINIVINIVE S1 ALIHDIINL »#€

viva dv04 ONY 3JONO ATINO GINAMIS SI NN 3LVI0TN, ASVYL #E
ANYOYIVE LYHL JHNSNI 0L SI 3WNA300¥d SIHL J0 3S0dHNd 3HL #€
18/61/90 yOSYIdLY dNDOILYIOPDLBE $TT  «Z

1S3N034 3INA3HIS %I3HD 417018

21 et ¢ ¢ 1 o ¢ 8
‘YASO
‘¥ :03:11X335 ‘Y 103 :0¥IZ "W YA WIEWSYLD
11x3 OACOYLE 9BEOZLE 00 L
‘20nz10
9BE0ZLE CBTOV.E GBEOTLEC 08 %
"HEWD00
98C02LE YBEOOLE CBEQL9E OF €
‘Y VL 1SIHID ‘WIYA VISHSYLIO
£8C0LYE ZBEORYE LLEOCFE 00 6
‘Y YL LSINID W -HA V] TuSYLE
SOCOTLE 2BEGEYE LLLOETE 00 —O
18/61/90 yOSH1dL.

o

USHIO=1

Y5129 ~H-8

[ A (3 *8
1I1x3 L3V 00rG
113 LSV OOnT
11X3 LZTYO0et
L2v00 F.Iv00g
(24 4 10] FCY 00y
L2¥00 Poriaeg
[ 24 4o 1¢] YZroony
yZr GO FIv00=9
yZroo FIv00»y
9CY00 FIYO0e9
9Ty 00 14004y

QO IL MLLECERE EZT 2
S3IvSS3u M 31v¥I01 SS32 619018

LD 1t

17



The header record has the form “#-H-modname", left-justified. The re-
cord fields and their layouts are described in appendix B.

3.2.4 Selection File. The selection file is a 1ist of modules to be processed
by PATCHANA, Each Tine contains one mcdule name, in the format required by

the system on which PFA is run. The selection file cannot contain any blank
records.

3.2.5 Terminal Inputs. All termminal inputs have a maximum length of 80
characters and must be left-justified.

a. Option Specifications. The affimative response to prompts for all op-
tion requests is 'YES' or 'Y'. All other responses will be interpreted
as negative,

b. File Name Specifications. A}l file names must be in the format re-
quired by the system on which PFA is run. The PATCHANA request for a
selection file name may be answered with the response 'TTY' as well as
a file name.

c. File Name List Specification. The specification consists of a list of
file names, each in the format specified by b. above, separated by
commas or blanks.

d. STAMP Report Specification. The specification consists of a string of
cont iguous lettars as described below.

7

Letter Requested Report

External Procedures Report
Structure Chart

Function List

Module List

HIPO Charts

TxNnwvm

The letters may be in any order, In addition, if no specification is
made, the STAMP default is to output all five reports.

e. STAMP Variable Lists. STAMP allows the user to specify that certain
variables in the program being analyzed be included or excluded from
processing., The responses to the prompts for included or excluded
variables must have the following format:
varl:tyl:ul,var2:ty2:u2,...varn:tyn:un,

where vari is the variable name, tyi is an abbreviation for variable
type, as specified in the appropriate encoder manual, and ui is the
variabte usage, encoded as follows:

D Defined
R Referenced
T Tested

- M Modif ied

A null entry in one or two fields means that these fields will not be
used as selection criteria.




3.3 Program Qperations. The operation of the PFA is discussed below.

3.3.1 COMPRO. COMPRO extracts and processes comments from a program source
file for creating program documentation., Figure 3-4 shows the data flow between
COMPRO and the rest of the PFA system.

COMPRO reads program source code files which contain comments in a specific
format. The information contained in these comment: is used to create a master
file which can be processed by other PFA programs tc generate reports used for
program documentation. A listing of the source code is also produced.

3.3.1.1 COMPRO Input Requirements. The only source file documented in this
manual 1s the PFA source code used by COMPRO to produce a master file. COMPRO
processes specially formatted comments to produce the master file. The
requirements for the special comments are described below.

a. Prologues.
(1) Each module has a prologue.

(2) The prologue is surrounded by asterisks. This means that the pro-
logue must be preceded and followed by a line consisting only of a
string of asterisks and that each line in the prologue must begin
and end with an asterisk.

o (3) Every prologue contains as the first non-blank line:
@ s
SUBROUT INE :  <name> - <description>
LIBRARY ROUTINE

Where, if the module has multiple entry points, <name> is the name
of the first entry point.

(4) rollowing item 3 is the module description:

AUTHOR:

DATE STARTED:

DATE LAST MOCIFIED:

PURPOSE: <function of module>

ggEERIPTION: <general design description>

PARAMETER LIST: <parameters and descriptions>

USER-DEFINED DATA STRUCTURES: <structures, fields, and
. _ descriptions>

VARIABLE L1ST: <variables and descriptions>

FILES USED: <file names and descriptions>

CALLS:

LIMITATIONS:

ERRORS:

A as there are appropriate data to include.

......................................................



SOURCE CODE

COMPRO

SOURCE
LISTING

Figure 3-4. COMPRO Cata Flow

20

ST IR DU e Gy

.~




-

R (5) For each additional entry point the module contains, (4) above is
SR followed by:

ENTRY POINT: <name> - <descriptiom>
and again, as many of the items in (4] above as appropriate.
b. In-Line Comments

(1) A1l in-line comments are separated from code by strings of
asterisks,

(2) In-line comments do not contain ' ',

(3) The in-line comments may contain psuedo path segment
specifications. These specifications document the flow of control
in a module and are used by COMPRO and STAMP to create HIPO
charts., If used, the path segment specifications have the fol-
lowing format and meaning:

(a) Tne specification for a path segment begins on the first com-
ment to be included in the segment.

(b) The specification is the rightmost item on the comment line.
. {c) The specification ic of the form:
o
‘::T (m](n1,n2,...]CE]

where m is the optional node label for the start of the path
segment, ni are the optional node labels to which the segment
branches, and E irdicates branch to exit, If the from node
label is null, the from node label will be assumed to be the
current node count Tor this module. If the to node labels
(including E) are null, the to node label will be assumed to
be the current node count for this module plus one. If this
path segment is an entry point for the module but is not the
first entry point to the module, m must be the name of the
entry point,

(d) The last path specification in a module has a to node
specified. -

(4) A1 referenced and modified variables appearing in a psuedo path
segment are listed in comments within the path segment for use by
COMPRO and STAMP, If there is no path segment specification, all
referenced and modified variables for the .rodule are listed. Com-
¢ents 1isting referenced or modified variables have the respective

ommats:

INPUT:  varl[:typel,var2[:typ2],...vari{:typel,

...varn[:typé]

21




QUTPUT: varl[:typel,var2[:type],...vari[ :type],

«..varn[:type]
where type is optional and is an abbreviation for the

variable's type. 1In the case of SNOBOL the types are abbreviated
as follows:

TYPE ABBREVIATIONS
String ST
Integer IN
Real Number RE
Pattern Structure PA
Array AR
Table TA
Created Name NA
Unevaluated Expression  UN
Object Code Co
Progranmmer-defined Data type name
External EX
Input [P
Output op
e Several lists may be included in one path.

(5) A1l subrcutines called in a pseudo path segment are listed in come-
ments within the path segment for use by COMPRO and STAMP, If
there is no path segment specification, all subroutines called in
the module are listed. Comments listing the calls have the
format:

calls: calll, call2,...calli,

3

...cai]n
Several lists may be included in one path segment
3.3.1.2 COMPRO Initiation Procedures., COMPRO may be run from any interactive

terminal connected to the VAX., Assuming that the uzer has logged onto the VAX
with the correct password, he can run COMPRO by entering the command:

$ PFA
{respond to menu prompt for COMPRO)

COMPRO will then prompt the user for the following information. The user's
response is underscored.

22




.. COMMAND/RESPONSE EXPLANAT ION

ENTER SOURCE FILE NAME The entered source file name is the name
M.SNO of the source file to be processed by -
COMPRO. -

.t ’!‘« 4
v T T

ENTER LIST FILE NAME The entered list file name is the name of the {f
M.LST disk file containing the output source
Tisting.

-1

ENTER MASTER FILE NAME The entered master file name is the name of
M. MST the output master file.

COMPRO will then complete the master file generation with no further
prompts.

=V oo

3.3.1.3 Files Used in COMPRO Processing. COMPRO does not use temporary files.

3.3.1.4 COMPRO Recovery and Error Correction Procedures, COMPRO indicates the
following errors:

a. Message: "ERR10: ERROR PROCESSING LINE IN MCDWE "
II( ‘line> n

This means that COMPRO has found a line in the PFA source with an un-
expected format. The message indicates an error within COMPRO, and
G processing temminates. E

b. Message: "ERR20: UNEXPECTED END OF FILE IN MODULE "

This means that COMPRO has found an end of 1ile while reading a multi-
1ine list. The message indicates an error in the PFA source. Process-
ing temminates,

0 |

In the event of a hardware error which termminates the program, the program
must be restarted from the beginning. In the avent of a fatal software error
while running COMPRO, all files must be checked to ensure they exist and are not
attached to another program; COMPRO is then rerun,

. Lo
B . st

3.3.1.5 COMPRO Limitations L
a. Comments in the input source listing may not contain ' ', :

b. Prologues must be delimited by a string of more than 40 asterisks ant :
other comments cannot be. L

¢. In-line comments must be separated from code by strings of asterisks.

3.3.1.6 COMPRO Sample Qutputs. Figure 3-5 presents a sample from a master file

output by COMPRO. The Tayout of the master file and the meaning of each field
is described in appendix 8. COMPRO does not output a value for the following
— fields described in appendix B: Source Sequence Number, Version Information,
- ' Quantifiers 1, 2 and 3, and Start, End, and Branch Sequence Numbers. In ad-
dition, COMPRO outputs only one software quality parameter to the type 8 record.
This parameter is the number of non-comment 1lines per module.




04dW0) Aq Inding 814 433Sely °*G~E danbi 4

[ 38 £.3-]
1IX3 Irty
‘SAYVANVYLS Q3IN1 430-¥35N JINS ‘ATAVLI SAYIYONVILS NI T TeL
JISVE HO4 NOILVWHDANI 3HOLS ‘AYvaNviS 0Isvd ¥04d 1S3L T £ 74
Vivad ¥3HLVO OGNV QH0I3d aviy ¥ TxL
‘WYL TEYLALS ‘W LS IXQI>8YLIALS ‘WINT XA T Ing
WIALS I3UALS 'WILS AINDIS ‘W LS ATD W 1LS AXYL W LS 'ANIW 1 I»F
‘W 1S LOM W LS 0530 ‘W LS ‘XA "N 1S di3L ‘W INI N 1 19
‘Y LS :DO3HALS ‘Y ‘1S XAl 'Y LS JINDIS ‘Y115 'ATH ‘HILS ‘AXYH 1 189
HILS ANIW ‘Y 1S (1OM ‘Y 1S 0530 'Y “4S [ JWIL Y d] (QUVANY LS 1 T#9
‘45170 ¥ 55
1 I»b
1SITT 1STVD «E
*E
SAYYANYIS WYHS0QUd ONIAL4IOIHS JFI4 -~ 3714 SAHYANYILS »€
*E
‘d3asn S3aANId »E
»c
140d34 0@ ~- O *E
1¥0d3Y LON 00 ~- O= *E
»E
d31 4043 Y L3
3d 01 SI QUVANVLS INIHYND H3HI3HM ONILVIIONI ovid - 19M #E
I 4 SAUVANYILIS WOHS QHOI3M LNdNT - dW3L »g
3Navi . SAUVANYLS -~ aviais »e
AHLNT 3gvL quvanyels - 23401Ss »e
JH¥NLIONYLS vivYad dLs 338 - ails *E
314 SAUVANYLS HO4 3T7avIdvn LNdNI - (QHYANVIS £354
(@ *'J=) 3ITINAOW FHL NI FONVHI *E Aw
NOTLVINIWNIOAd HO 3402 v S314INOIS AUvANYLS SIHL e o~
A0 INWA GHL NI JONVHI ¥ HIHLIIHM ONILVYIIANI 9v1d - HINDIS L]
AYVYANVYLS az3W 0L 3INTVA WNWIMNIW -~ ANTW »E
QYYANVYLIS L133W 0L 30VA WNANIXYW - AX YW ®E
3avl ,SAYVANVLS OINI X3IANI ANV 138V guvdnvils - xdail £
JUYINYLS ONILVINDTIVYD HOA NOISSIHHXT - ALD #€
NOTI1dIY3S3ad auvanNvls -~ os53aa *E
#E
1SIT 3NAVINVA »E
*e
()d1sav3ay STIVD #E
#E
‘IEVE SAUVYANVLIS 3HL NI SAYvANVLS JISva 5dl *E
H0d NOILVWYOINI 3HL S3Y¥0LS OGNV 3714 SOHVANVYLS 3HL SAV3IN A1sSav3iy *E
L3
:3S0JUNd »€
#e
314 SAUYANVLS av3y - 41savay INILOAOHENS =E
1e 22
3114 SAUVANVLIS avay [s S R=Ce L LA
a1savay —-H-¢
[+ €35
TYHINT CINYL 'Y (LS TEY3A ‘M LS THAN 11Xx3 T#9
Y15 H3IAYIH 'Y INT ‘dY ‘¥ NI 71 ‘¥ d0 ‘1¥0d34 ‘Y NI DY 1d4av3H 11X3 149
‘1N01N0GO LIX3 %G
11X3 T#t
INOLNg  ‘STIWI #E
*E
1480434 #g

NOSTHYJWNOD FUNLINYLS 3HL SNIVINOD 3114 m:.—u\ I4 Ly0d43Y *€ A
. %€ Lt




A reformatted source file output by COMPRO is similar to figure 3-1 but
includes page numbers and page headers. The page numbers provided with this
l1isting are referenced by some of the reports produced by STAMP, SOFTPRO, SYS-
TRUCT, and PATCHANA. The page headers indicate the report is unclassified.

NI R PR
o PR s
LN P

. P

e M b

=t PR

3.3.2 STAMP, STAMP provides program structure analysis. Figure 3-6 shows the
data flow between STAMP and the rest of the PFA system.

The STAMP program reads the Master File and generates reports on the nverall
system under analysis to aid in modeling that system and to provide informa'.ion
about the structure of that system. STAMP provides five reports, as follows:

External Procedure Report .
Structure Cha~t -
Function List g
Module List :

HIPO Diagram

3.3.2.1 STAMP Input Requirements. The encoder (AUTOxxxx) or COMPRO must have
bean run previously to produce the master file needed as input to STAMP.

L.

3.3.2.2 STAMP Initiation Procedures. STAMP may be run from any interactive o
teminal connected to the VAX. Assuming that the user has logged onto the VAX N

with the correct password, he can run STAMP Dy entering the command: o

0 L
-

25




> TR e e T e e e e e e LENA e Aous Sul o pen s o gl P STVEEAS AL ST ST PR

MASTER FILE

STAMP

txternal Pro-
cedures Report

Structure
Chart

Function List

Module Lisf—]

HIPO Diagram

Figure 3-6. STAMP Data Fiow




o T T i AR AR T e P S B I e TP
»

b

‘.
:
[
.
,A.
)
?
i'

$ PFA

P R L I . 2 T T B

{respcnd to menu prompt for STAMP)

STAMP will then prompt the user for the following information:

COMMAND/RESPONSE

ENTER MASTER FILE NAME:
M1 MST

ENTER REPORT FILE NAME:
M.REP

DO YOU WANT ALL THE REPORTS?
ND

SELECT REPORTS (E: EXTERNAL,
S: STRUCTURE, F: FUNCTION,
M: MODULE, H: HIPOQ)

SH

DO YOU WANT SPECIAL PROCESSING?

yes

DO YOU WANT TIMING MINIMIZATION?
YES

DO YOU WANT PATH PRUNING?
YES

DO YOU WANT DEBUG QUTPUT?
NO

DO YOU WANT FULL STRUCTURE CHART?

¥es

27

EXPLANAT ION

This is the master file to be processed
in this STAMP run,

This is the name of the disk file to con-
tain the output STAMP reports.

'YES' or 'Y' sets the default to produce
all of the reports, otherwise the user
must select the desired reports. In the
example, the negative response indicates
specific reports are desired.

The request to select reports allows the
user to choose the reports he desires.
In the example, the structure chart and
HIPQO charts have been selected.

'NO' or 'N' if additional options are not‘
desired., If 'YES', user nust answer
prompts to select desired processing.

Timing minimization provides information
for timing analysis using the path
segment descriptions in the HIPO charts.
If minimization is requested, the
quantifiers, consisting of such values as
execution time or number of executable
Tines of code reported for each path
segment in the HIPO chart, will show only
the difference in values hetween paths
fron the same node.

Provides additional information for tim-
ing analysis using the path segment des-
criptions in the HIPO charts, If "YES"
in addition to timing minimization, ref-
erences to nodes, all of whose path
quantifiers are zero, are deleted and
paths reconnected as necessary,

Consists of node data output to the file
STAMP.TMP,

The full structure chart includes module
descriptions along with the module
names.



L

. .

“'."‘.r"r'r" -

o]

COMMAND/RE SPONSE EXPLANATION

DO YOU WANT VARIABLE PROCESSING? Variable processing is used to include or
YES exclude specified variables from process-
ENTER VARIABLES TO BE INCLUDED: ing. The variables to be included or
VAR1:IN:M VAR1:IN:R excluded must be specified at the next

two prompts. The first prompt, for
included variables, detaults to all,

ENTER VARIABLES TO BE EXCLUDED: The second prompt, for excluded
VARZ2:IN:D variables, defaults to none.

The STAMP program will then complete the report generation with no further
prompts.

3.3.2.3 Files Used in STAMP Processing. Two temporary files are used in STAMP
processing, STAMP.TMP and STAMP1.TMP.

3.3.2.4 STAMP Recovery and Error Conditions. STAMP provides the diagnostic
message: BAD MAP FOR ". This means that there is a to label without a
corresponding from label or that the from or to label is null for a path datum
in the master file. This results from incomplete path structure generated by
the encoder or fram dead code in the source code being analyzed.

In the event of a hardware error which terminates the program, the program
must be restarted from the beginning.

In the event of a fatal software error while running STAMP, the user should
check to make sure all files exist and are not attached to another program, and
rerun STAMP.

3.3.2.5 STAMP Limitations. STAMP may cause memory thrashing if there are more
than 1000 path records ir any module or if there are more than 300 path records
in any module and path pruning is being used.

3.3.2.6 STAMP Sample Qutputs.

a. External Procedure Report (see figure 3-7). This report shows all calls
to external procedure in the program being analyzed, where an external
procedure is any module not appearing anywhere in the file, The calls
are shown in the order in wnich they appear in the file,

b. Structure Chart (see figure 3-8). The structure chart shows the calling
structure of the program being analyzed. Each call statement occurring
anywhere in the program is shown, along with the “level” of the call.
The main module is listed first, with a call level of zero. After each
module, all modules called by that module are listed, at the next-
highest call level.

c. Function List (see figure 3-9). The function list is a list of all

task-level modules in the system. The name of the module, a description
of the module, and version information are provided.

28




1 39vd

140d3Yy SSUNP3I0UAJ [RUUIIXT dWYLS °L-E d4anby g

L2 A2 2 XTI Y YY)
ess JITFISSYIONN ens
4RSS0 R SRRV GRRG AN S

VSRV BRI REBOBRERS

ene QI1JISSYIINN aee
AN AP IREVSERANSOCNE

n0Lno
ANOINI
dvMS
ANIM3Y
¥i3g9
42340
inoLno
LERUE D]
¥3INID
AN0LNG
WINT
WONI
inoing
NONI
aNnCu

HNANRSYL
dWvLs
SAUSVL LN0S
qiLy043y
3InNndd
HJlvd
WSv1iino
Hivdino
NN 3LNO
NN FLN0
yvAaINt
WSVYIONI S
WEVLQANT 4
¥81Ad0D
L10nv

IWNA3IO0Nd "LXY

1¥043¥ 83¥NA3II0Ud TVYNEILX3

29

et



()]

1 30vd-

J4RY) BUNIINUAIS dWVLS ‘8- B

I Y YT Y Py SV Y ST Oy
wan QAT JISSYTIONN wes

LI EZ 22 X222 222222 22 X 2

nbi 4

(IYNYILXT) ¥ONT

(TWNYILX ) LNOLNO

BABBERBRSEBNINRBBNGY

sus QITSISSYTIONN wee

BB GUVCHRBCGIORAINBRNN S

e
-

YSLAdOD
USVYLIHIYS
(TWNHILXINIAN TM3IY
aqLy0d43y
JdHNAAUSY L
(IWNYILXI) LNOLND
HSY LLNO
JUNLINALS
CIYNYILXTIYILINID
(WNYILX I AN0LNO .
NNSLNO
CTYNEILX3) HONT
(WNHILX T LNO0IND
WSVYLANT S
(IYNYILXI) dYMS :
SHUSYL LH0S
HivdUv3ay
(IYNYIL XI) ANNOY
1130V
CIVNYILXI) HONIT
UYAINIT
CIWNEILX ) LNOINT
dWvis
€ z 1 Q

30




91 30vd

3517 UoL3oUNY dWYLS “6-€ aunbiy

ANBR BB ARSI RENANDS N

soe QITAISSYIONN <we

NP BRBR GNP RRBOBBNe S

(0¥
[§-1
(9
v
(t
(7€
(6T
{1y
(62
(€L
(% £
€y
Ly
{46€

:39vd)
:39vd)
:39vd)
f39vd)
139vd)
:39vd)
:39vd)
:39vd)
139vd)
139vd)
:39vd)
:39vd)
:3ovd)
:39vd)

NOTAVHY¥OINT NOISY¥IA

¥3IHI10 JO YIAW3W HOVA OL LSIT INO 40 HWIGHI HIVI
37NA0W HOV3 HO04 E3NEVIYVA S5300ud

S1S17 INAOW LHVYHD IUNLINMLS LNdINO

3NOOH v ¥0d4 STIVD INLLNOYENS TV 1237702
HYH0Ud & ITTT300W SISATVNY ONIWIL ONV 3I¥NLONULS
1074 INAOW ¥0d4 TIVL3IA 3IHL 30na3¥

Hivd 310 ¥0d NOILVWHOINI LHVHI OdlH LNdING
SHLYd 123NNOD3M ONY S3AON 31373G

§37avL ¥IGWNNIY ONV SITHINI TN 3A0L3Y

SHIVd ¥04 NOILYWHOINI LUVHD OdIK 1NdING
NOTAWHHOSNT ONIWIL 3IZIKININ

ONIY¥IEHNNN JAON HO2 SHIVD dvM

Yiva dvi: ong3q 4

18171 Vv 20 H3IOW3H HOV3 01 ANVISNOD v Qav

aavx

0Y A
TvIIvHL
1uans
dWvis
INNYC
JdWNTHLYd
HJivd
avinvd
Hivding
JZIWINIW
HiVddvHW
dVH JINa
Tvaay

NOILdINO3G
1S17T NOLLDNNS

EAX 222222422242 22222 )

sae QITIISSYTIONN sese
BREADABBURERUGR BRSOV R

19

NOLLONNS

k)|



d.

e.

Module List (see figure 3-10)., This report lists all subroutines and
entry points in the program being examined. It provides the following
information for each module:

(1) Module name
subroutine

task
entry point

(2) Type of module: §
7
E

U u u

(3) Page number refers to the page on which this module can be
found in the listing provided by AUTOxxxx.

(4) Description of module is taken from the first line of the
module,

(5) Call level shows both the minimal (top) and maximal (bottom)
“distance" of the module from the main program as determined
from the structure chart.

(6) Version information is taken directly from the master file.

HIPQ Diagram (see figure 3-11), This chart shows, for each module, the
following information: module name, a list of all modules which call
this module; a description of the module; and a 1ist of all program
segments of the module, where a program segment is a contiguous group of
records which contains no branches except possibly on the last record of
the segment.

For each segment, the following are shown:

(1) Inputs: This is a list of all variables which are referenced
within the segment,

(2) Processing: This is expressed by the string:

11: labely(Sy) labely(Sy): <firstline-lastline> branchpoint 11
is a sequence number.

Label; is the line number of the first record of the seg-
ment.

S1 is the segment number. (These are assigned sequentially
in the order in which they occur in the module being
scrutinized). '

Label, is the line number of the segment to which program
control is transferred after this segment of instructions has
been executed. If program control can be transferred to more
than one segment from this segment {such as in a conditional
branch), then the information for this segment will be re-
peated once for each branch point. (That is, only 11,
labely, Sy, and branchpoint will change).




1547 3LNPOW dWYLS *OT-€ 84nbyiyg

AR SHRBERNRSABBINNG S

ane (A314ISSYIINN ene

4RGN BIABVRBENSURNNN

oy i agex
-1 1 208 dyvA
1< s d17JuvA
92 1 A2 dvHL
12 s dUNGUSYL
9 1 D HANS
-+ S  IuNLINALS

{ 1 dWYLS
(14 S HSVLHIYS
L3 S  SWSYL1INOS
1] S qALH043
14 S Hivdav3iy
9e I3 3INNYd
34 1 NAHLY Y
1y 1 HILvd
[-¥-4 1 avL%Iv4
61 -] WSY1in0
€e 1 HLVdLING
oz ] NN N0
[ £ Iy AZININIW
(44 1 HLY ddvid
0s 8 YYAINI
at ] WSVLANT 3
Ly 1 Vi NG
92 S WS1Ad0D
13 8 1ranv
&€ I3 Tivaay

[+] o Y3H10 40 ¥38W3W HIVI 01 ISIT 3INO JO HIAWI HOvVI
o o 3WNAOH HIVI 04 S3TavIiyva SS53208d
! T ’ S$31aVINVYA A¥VSSIIINNN JAWIKINI
] o S1SIT 30K LYVHT J¥NLONHLS 1NdLND
e e INNA0H INO ¥02 O4NT ASIT 3IWNA0W LNdLIN0
[+] o IWAOH ¥ ¥OJ STIVI INILNOWENS v 1D37170D
1 4 SiY¥YHI IUNLINYLS INdLIN0
0 0 HYHOONd ONITIA0W SISAT7HY INIWIL Quv J¥NLINHLS
z ] JWVYN WSVYL N3ALD HO4 37avi NO HOMY3IL AMVNLIG
1 4 TOZ ON WHLINODTV WIVYD ONISN 31gvi MS¥L LHOS
1 ] SLUVHI OdIH ANdLINQ
1 1 4 34 ¥3LSWE avIy
L] ] Mod INAOW HO4 TIviIA IHL JING3H
L] 0 Hivd 3IND HOd NOTLYNHOINT LHYHD OdIH ANdLINO
o 0 SHIVd L1I3NNDOJ3Y anv S3AON-31373a
o o S37avL H3GWRNANIY ANV SITYINT TN JA0uIY
T | 1S17T INGOH 1\NdING
0 ] SHi1Vd Y04 NOILVYWHOANI LHVHD OdIH iNdIiNO
1 1 1SI7 NOTLAONND tndiNO
o) o NOTLYIHHONT ONIWIL IZIWNINIW
o o ONINIEWNN JAON HO4 SHivd dvud
] 1] ILYNIKIT3 ¥0 3dNTIONT 0L 831dvINVYA JUOLS
1 T LY¥0dIY SIYNGII0Ud TWNY3ILXI LNdINO
4] ] viva d4vH oNg30 JWNg
1 ! 3IV4S 3AVYS 01 318ve WSYL MIN Vv ALvIND
1 1 TYNIWNIL 0L SOILSILVLS HYHIOUd N
o o 1817 v 40 ¥3IMIW HIvI OL LNYLSNGD v 4av
NOLLYHNOINT NOISH3IA HOLL108 dO4 NOILdIHI3a
383 1)

1817 3Wnaou

L1 39vd-

39vd NLYENS VN IINAOH
/HSYL

(T 2222222222 2222 X 2
see QIIAISSYIINN eew

PYT YT X2 2L — “.oocu

- e e wm Tee m e o m oL .

33




LR I e e kP Baumt v ot cve e s e

't SUSVLHON
‘16 IMIT1'L8 :3dALIIY ‘1S ‘HILSVH

S1NndIN0

3424 OdIH dWvlS “TT-€ 34nbiy

IYYEIIERRZS S22 22 2084

ans QITJISSYIONN sns
FRBRARABURRBARRARRNR

‘€0 ‘20 ‘10
C-1(61)23000{(6)8LT €
‘€0 ‘2o ‘10
-a¥OI3Y HONS 16HI4 3L 10N SI L1 QNY #1 B0 #0 3dAL
‘37NQ0W  ¥OdA
‘av3y N30 3AVH IINCOW ¥ HOA SAY0IIY v H3ILdY ‘NI ISHSVLHNN
<= (2)av3div)IIavay 'y *18°3dALD3Y 1S (¥ILISVH "dl :AdVD
‘€b el ‘10

INCOW L5V 40 INISSIO0Hd dN HSINIS 01 0Vd

<~ F(E)9LY E
--—¢ HO4 dVH avl--- ‘€

‘€0 ‘co 10

3714 ¥ILSVYW WOU4 quod3Y av3d

C- (I IGYINIZIaYIY (2
‘€0 , 20 10
C-@(TIHLVHaY3Y 3
———z HO4 dvd ava--- 1
ON1E53204d : S1NdM1

zUZ~.QJW—&.Ik(LPDO.bDOﬁhm.ochz<>.JUZQDW.Ih(&&(E.NN~£—Z~Z ‘S1VI
‘dWl dWVYLS ‘314 AYVHOJIMIL IHL OL NOTLVWYO04NL Lyvud

OdIH HIN3INI SINdLND ANV ‘STWD 3NILN0Y¥ENS 1V §12317Q0 '@2153n03Y
41 ONINNHG HIVd QMY NOTLIVZIIWINIW 3WIL SWyd4y3d Hivdav3iyd 'QIaNnLs

aNV Qv3d N332 3avH 370A0W v HOd SAU0J3IY Jil 1V 43LdY ‘§37MVL NI
vivd JHL STUDLS GMv 3714 Y¥3LSWW 3IHL HOud ayoo3y HOV3 SAVIY KHIVJAVIH
INOILONNS

(YHIvdavay VI

3114 H¥ILSYH gv3d - HLIVJIAYIY  3NILNOHANS

‘dlYLS

‘HLVJdAV3IY ONITTWD) S3NA0W

(11 39vd)3 T4 ¥ILSYW QYN - HIVJIAvIH 3WWN

NOILINI&3Q INT1LNOUENS

¥E 30VYd-—

PYYYTIS AL Y I R
ans anunmm¢JuZd (L1 )

Yy ITITIIII T .1. Am.

34




Sp is the segment number to which control is transferred.

Firstline-lastline shows the first and last records of this
segment,

Branchpoint is the record to which control is transferied,

The first line is followed by a second line with three

values:
Q1: This is the computer CPU time this segment consumes.

Qo is the number of assembly statements in the segment; and
Q3 is the number of storage words in the segment.

(3) Outputs: This is a 1ist of all variables which are modified
by the segment.

3.3.3 SOFTPRO. SOFTPRO performs software quality analysis. Figure 3-12 shows
the data flow between SOFTPRO and the rest of the PFA system,

SOFTPRO reads the master file and software standards file and generates two
reports. The software profile reports for each module list the violations of
sof tware standards as defined by the user in the software standards file. The
profile summary contains the list of standards, the number and percent of mod-
ules meeting each standard, the number and percent of modules violating each
standard, and the reference to the regulation containing each standard.

3.3.3.1 SOFTPRO Input Requirements. The encoder program AUTOxxxx must have

Deen run to create the master tTile, The software standards file must also ha-e
been created,

3.3.3.2 SOFTPRO Initiation Procedures. To run the SOFTPRO program, the use-
should enter, from an interactive terminal connected to the VAX, the command,

$ PFA
{respond to menu prompt for SOFTPRO)

SOFTPRO will then prompt the user for the following information:

COMMAND/RESPONSE EXPLANAT ION
ENTER THE MASTER FILE NAME: This is the name of the master file that
M1,MST will be precassed during this run,
ENTER THE STANDARDS FILE NAME: Tnis is the name of the standards file to
M .STD be referenced during this run.

DO YOU WANT THE FULL REPORT (Y/N)? A fuli report includes a software

Y standards violations details report for
each module as well as the software
standards violations summary report for
the entire program.

SOFTPRO will then proceed to generate the software profile reports.

35

P ——— e At B e M



IS T e

MASTER FILE

SOFTWARE
STANDARDS
FILE

SOFTPRO

¥

Figure 3-12.

Software Star-
dards Violza-
tions Details

Sottware 3:i2n

dards Vizlz-

tions Surma-y
-

SOFTPRO Data Flow

36




?QQ- 3.3.2.3 Files Used in SOFTPRO Processing. The report output from SOFTPRO is
~>.."  'placed in a fiTe named PROFILE.REP.

3.3.3.4 SOFTPRO Recovery and Error Correction Procedures., SOFTPRO has the fol-
lTowing error conditions:

a. Message: “STANDARD REFERENCE IN STANDARD LINE " IS NOT FOUND

This means that a standard reference in the calculation field of the
indicated line of the standards file cannot be found.

b. Message: "IN STANDARDS FILE, ERROR IN SPECIFYING CALCULATION FOR
STANDARD LINE "

This means that the calculation field of the indicated line of the
standards file is in error,

c. Message: "IN THE STANDARD FILE, LINE SPECIFIES A CALCULATION FOR
A BASIC STANDARD"

This means .hat for the indicated 1ine in the standards file, the
standard number is between 1 and 14, indicating that it is a basic
stindard, but the calculation field contradicts that by providing a

calculation.
L d. Message: "IN THE STANDARDS FILE, LINE SPECIFIES A STANDARD WHICH
‘ ® IS NOT BASIC BUT IT HAS NO CALUCLATION"

This means that for the indicated 1ine in the standards file the
standard number is not between 1 and 14, indicating that it is not a
basic standard, but there was no calculation using basic standards
included in the calculation field.

3.3.3.5 SOFTPRO Limitations,

a. A maximum of 14 basic standards can be enterad on the standards file. A
basic standard is one directly calculated by the encoder, AUTOxxxx. It must
have an identifier of from 1 to 14 in the standards file,

b. Module names must be from 1 to 10 characters long.

¢. The maximum number of standards allowed to be input is 30.

d. The maximum number of operators allowed in a standard expression is 20.

e. The maximum number of subroutines allowed in the master file is 200.

The last three limitations are program parameters which may be increased by
modifying the parameters in the source code and recompiling and linking.

—~ 3.3.3.6 SOFTPRO Sample Qutputs.

a. Software Standards Violations Details Repcrt (see figure 3-13). This
report lists each module of the file being analyzed. For each module

37




340day S| 1e33Q SUOLIB|OLA SPJRPURLS 0¥d140S “EI-E €4nbi 4

(0 3ovd) E- A
d30dv01-3¥d ¥ WON¥d D08 3HL 0L viva AVIdS10 QN3S -~ 208X
T b ¥ SHL91-ALSTN 0 66666 —— 0 001 :IONVH AILLINYI &% 28 QIUINIUKAD 330D %00t

NOILVIN3WNDOA ‘0d3 0 "6666 -—— 0 021 :3IONVYH QILLIKYI 00°Ls OZ1 < 9070Ud NI SINI G INIWWGD
. SQYVANV LS 40 SNOILVIOIA
{0 39vd) 1'¢v2
1VINHIS D25 3HL OL Vviva NvOvl ONY NOILVOIAYN GN3IS ~ 1782
NOILYINIWNO0A '9d3 0 66646 =—~- O 01 : 3ISNVY A3LLIWNYId 00 1L 021 < 907¥d NI SANIT LN3WWOD
. SCHVANVYLS 30 SNOILVIOIA
(0 ‘30vd) v e
IA 370SNOD LNOWI3HD 3HYMLAOS IHL HLIM PLVIINAWKOD - L1325ZX
ALIX3d102 '9d3 O 0¢ =~ 0°0 :3ONVY Q3ILLIWY3d 00 L§ 0% > SINIILVIS NOILYEVYIDIA JO HIGWNN
ALIX374W0D '9d3 0O 62 —= 0°0 IONVY 0ILLINNIL 00 ¢% &2 > SINIMILIVLIS NOIIVEYTIIIA 40 HIQWON
ALIX3T4KOD ‘943 O 006 -~ 0t C3ONYY G341IWY¥3d 00 ‘02¢ C0G > S3INIT JO HIGWNN
ALIXINHHOD '0d3 O 62 ~~ 0y CJONYYH d311IWY3d 00 ¢E 0E > ALIX3IMOD S, 3avIOH
ALIX31dWaD ‘0d3 O 6% -- 01 S3ONVH 0313IWH3d 00 ‘g€ 0Z > ALIX3AMOD S.3avIoW
ALIX3NdHOD ‘9d3 0 6 -— Q01 C3ONYY A3111WNH3d 00 ¢ 01 > ALIX3IdW0D S, 3avI0u
TV v CoL91-ALSTIN O 66646 ~— 0 001 :IONVYH QILLINHIL Ye ve QIUINIHWOD 300D %0OT
NOILYIN3WND0A ‘9d3 O 66666 —— 0 'CL ‘JONYY QILLIWYNIL L L2 A4 QILNIWNOD 3a0D %SL
SAYYANY LS 40 SNOILVIOIA
0 ‘3ovd) | 4
1337135 MSVL KYNOOHd SHOITY TWNOILVEIDD 3HL 20YNWW - NODJIGOWZWX
NOILVINIWNDOQ ‘0d3 O 6666 -—- 0 037 :30NVYH QILLINYNIL 00 ‘89 OZT1 <€ D070Hd NI S3INIT LN3WKOD
SQYVANYLS 40 SNOILYO0IA
0 ‘30vd) zree
J¥OJ TIM HIIHM 3NILNOH 1HVIS3IY ¥3MOd v 3NIF30 OL -  *dNdMdZax
TVt 'S 6L9T-0LISTIW O 66666 ~- 0 00T :IONVYH QILLINYIA £E ‘€9 G3IN3WWHOD 330D %00t
NOLLYINIWNDAA ‘Od3 O 6666 ——~ 0 021 :3ONVH Q3LLIWYId 00 08 OZ1 < 0070Hd NI S3MIT INFWWOD

TP CHL9T-QLBTIW

NOILVYIN3INND0A

‘0d3

SAYVYANYLS 40 SNOILYI0IA

0 :30vd) z'rrze
IHIL NOISIO3Hd ¥04 3NTIWA INIOd ONILVYO1d Vv SAIAO¥d - Ld413978X
0 66666 ~~ 0 001 :39NVY G3LL1IWYId ca-es Q3IN3WHDD 330090 %00t
0 666466 —— 0°GL 3ONVY GILLIWYId Z8 z¢ GILNIOI 300D %GL
SAHYANY LS JO SNOIiIVI01A
({4 3ovd) t'vree

ANTUIHYINT THM HIIHM 3NILNOY WI0TD ¥3SN v FAIAONd - O '3WILdZHX

Sy ¥ SHLP1-TUASIW

NOILY1N3IWND0Q
NOTLYIN3WNIOG

NOILVLIN3IWND0A

‘0d3
‘0d3
‘0d3

0 "66666 == 0 001 'IONVYH QILLTWYIL 0¢ 'LE G31IN3WKWOD 300 %00t
0 66666 —~ 0°CL "TFUNVY GILLIWYIAL 06 'LE G3IN3NOD 3002 %GL
Q 66666 -~ 00§ JONVH QILLINYIL 0§ Le QILNIMOD 3Q0D L0S
0 ‘6666 -— 0°0Z1:3O0NVY G3ILLIWYIL 00 81t 021 < £27048d NI S3aNIT IN3WWOD

SAYVYANYLS 40 SNOILVO0IA

e ‘
0 30vd) K _L , e

38




Fe—

340day Asewwing Suorje|oLA SpARPURYS Q¥dL40S HI-€ o4nbi 4

SOYYGNYLIS JLVI0IA

ALIX3\M0D ‘943
ALIX3AMOD ‘043
ALIX3NMOD "Ou3F
ALIX3ITAN0D ‘Dd3
ALIX3AMOD ‘Dd3
ALIXIVMOI ‘043
ALIX3TMOD ‘D43
/ EES '6L91-T1S-TIW
\ TP Y GHLIT-ALSTIIN
\ HOIL1VIN3IWNIOQ ‘0d3
/ NOTLVYINIWNNGO0Q ‘963
LES '6L91-04S-TIH
NOILVYIN3WNIO0G ‘Dd3
NOTLYIN3IWNDO0A ‘943
\ Ty ¥ ‘6L91-04S-T1H
/
A
\
\

(%0
(79
%9
(X9
(%9
(%9
(%9
(%0
(ALY
(%€
(%8371
%0
(%1L
(%0
(%0

’
)
)
H
)
4
)
)
)
)
)
)
)
)
)

OQCONOMVNVO vt otont ot e O

-

(%001)
(7Zv6 )
(%v6 )
(Zys )
(%¥6 )
(%6 )
(4%6 )
(%4001}
(%ZES
(%69 )
(%428 )
(Zooh)
(%62 )
(%200%)
(%001)

SAUYANYLS 133W

/A 001> SINIWILVYLS NOILVHVID3Q 40 HIAWNN
91 0§ > SINIW3LVIS NOILvHvII3G 40 YIaWNN
91 €2 > SINIHILVYLIS NOILYAEYIDIA 40 ¥IGWUNN
A4 006 > S3NIT JO Y¥IGHNN
91 0€ > ALIXINHWOD S, 3GvIIH
91 0Z > ALIXITHWOD S, 3avIdouW
1 07 > ALIXINdWOI S.3avIIuW
¢t T = SLMNIOd AYINI 4O ¥38WNN
] AILNNCD 310D %2007
131 GIANIWHAD 500D %6L
vi GIINTWKOD 300D %Z0S
o 00Z > SINIILVIS 3BVINIIXI 40 YIGWNN
S 021 < 0070Hd NI S3NIT INIW0DD
L1 0% ¢ 0070¥d NI S3NIT INIWHOD
[A¢ . 0E€ < 9070¥d NI S3NIT INSHHOD

NOL1dINIS3a

AYYHLNS NOTLVYTIOIA SAYYINYLS 3dWYML40S

39




cr
[54
96
00

[ 24
[s]¢]
124
134
18
11
9%

11
A
69
20
re
00
€c

oS

K12
orcy

14>
006

| 35 4
oBg
(24

ey

ric

‘11€
t€
00’

€L

‘ry

cot

e

-
-

‘ce

=1

Le

134
154
36
00

K12+

orey

€

Q06

[ 4
coC

‘LCw

1 434
vic

‘11c

£C
006
[>¥4
1 44

-
[d

oocE
re

gz

‘€9
Te

Le

19 4
<9

[a]e]

€E
Q0

<c
18
11
26
00
16
[
&9
00
| £+
[s]¢]
€

-
“

0s

340d3ay Ssan{eAp xuw_mzo 0Yd140S

K124

ovZy
96
‘006

[ 23 4
ose
fav) 4

R i34

vig

‘11e
‘e€

006
€L

‘v

-
<

GOE

B A4
e
‘c8
26

LE

(2]
00
o0
00

00
N0

00"

00

00
00
00"

00

ocC
00
o0
00
00
00
00
00

CCVO000O00CO000000AG 00CO

n

€C 6¥
00 TvO
0o Y
00 C61
00 ‘¢t
00 0T
00 ‘11
00 'ZT
00 LT
00 «Z
00 68
00 'Y
00 9%
00 89
00 '=¢
00 9
00 €91
00 '8
00 B¢
00 Cb1
00 ZL
v

ANTLNOYENS AR

[
00"
o0

00

00
ele]
00
00
o0
00
00
00
Q0"
00
00
o0
[of¢]
0
00
00
Q0

&€
400!
€

Tz

[ 4

e

1t

zz

‘e
e

‘€0t

-

<

re

ol

[oted4

ve

so61
veé

€

*GI-€ 34nby 4

-

<

'¢68
K]

91

‘89

L

Ly

00t

‘c8
‘v8
‘TE
K]

e

o€

%4

a1

201t

81

R

€01

K24

-

$301vA ALITVND

90
00
00
00

o0
G0
00
o0
[e]o]
00
Qo
00
[ale]
00
[o]e]
00
00
00
00
00
00

‘901
‘€08t
‘c9
THT

(54
(¥4
ve
8L

ch

091
KA
‘s€t
et
s
1w

z6t
a9
[a1:)

6CT

90 90t
00 '£081¢
00 'T9
00 Z6t
00 €9
Q0 3¢
00 'v¢L
00 ‘8L
Q0 €6
00 ‘=&
00 091
00 C9
00 'sc1
00 «8B1
00 L6
00 1L
00 @61
00 89
00 08
00 661
00 8r1t
v

90"
00

00

[s3¢]
[o]e]
oo
00
o0
00
00
o0
GO
00
[o]o]
oo
00
[s]o)
Qo0
00
00

901t

coal

c41

154

TL

v
8¢

‘€6

Zé6

o9t
z9
CET
A:
A
1

CTAT

‘a9

[o]:]

E-12

-2

3ovHanv

AvioL
WA TN
WAW T AvW

1OMSZA
‘TH2¢
'0aszx
‘185X
101SZX
‘TASIX
¥0SIX
Yiv3ua
€0SIX
T0SIX
10SIX
11205IXx
NOJ3A0WIWX
fdNYM U
1d4139I4X
QINLLSTHX
WY HO0UdZIX
INTINROUANS

n3av ais




(*3u0)) 3uoday sanyep £3)ienp

-y~ g e o
- D

Sl

-

,
i J1HL3IN M3 '0d)
Iy IYNLINYLS ‘043
" ALYV ‘0dI
i ALIXITSHO) 243
ALIXIVANOD '0d3
m. ALIXIdW0D 'DdI
. ALTX3INW0D '9d3
ALIXIVdWI) ‘043
. ALIYIVHOD ‘D43
2 34NLINBLS '0d3
, ALIXIVAMOD 043
A €€ 6 '591-018-1IH
e Ty v G 6L91-018UN
P, NOLLYIN3WNI0T '0d3
X NOTLYLNIWNDI0A ‘043
. NOILYiH3WN20Q ‘0d3
. L €6 'ALIT-ALS-UM
' NOJLYINIUNIDT '043
NOTLYLININNI0G ‘043
- NOILYLIN3WND0Q ‘0d3
-, Ty ¥ GC '6L91-0L8-T1IH
0 IONIYIA3Y QUVaNVLS
L
‘..
v
X
b
ARSI A ° AN . . N . -8 )rL.Nhl.

0 o0t -~ 0t
[ - 01
0 oot - 00
0 Cs - 00
[ 384 ~ 00
0 00¢ - 01
0 &2 -~ 01
0 &t -~ 01
06 -~ 01
oc -~ 00
o¢ -~ 01
ot -~ 00
Q 66488 — 0 Q01
0 4466868 -~ 0 CL
0 bb46b6 -~ 0 OS
0 6666 -- 00
0 ooz - 00
0 68688 ~-- 00
Q 6666 -~ 09
0 66686 -- Q OZ1
0 6666 - 009
0 6466 -~ 0 0OC

JONVE G3111WY3d

0¥4140S

*Gl-€ 9unby

‘AIC IUNLNY

(3UNLONY1S NMOQ dDL) ANIHL0TIINAID Iyning
001> SLININILVLIS NOLLIVEYIIIA S0 ¥IAWNN
0C > SINNIILVIS NOLLIVEYTII3Q 40 ¥IEWNN
€ > SINRIILVLIS NOILVEVYIO3d 4O ¥IAWNN
Q0¢ > S3aNIY 40 yIqUNN

[+1
oz

o1

>

2 ALIX33400 8. 30vIDM
T ALIX3IWOD 8. 3BVIIM
> ALIXIIMOD S, 3BYIOM
€ > ALIXIVJWOD SLOHA
ALTXITISWOI SAvIINIvH

1 = SINIOJd AMINI 0 _4GWNN

A3 fMowars 3A0J XO0OT
QAUNIIMOIY 3T0I %6L
GIINIS0I 300D %06

3WHO) G3G038WI HIIM SINIIILYLIS 40 HIARNN
00T > SINIILVLIS INEVINIIXI 40 dITHNN

s3I

ANIHHOI-NON JO 330NN

SINTT INIWOD WUNVIB-NON 40 ¥IGHNN
OZt < 200ud NI BINIT INMHOD
09 < 20°0Hd NI B3NIT INIWWOI
0C ¢ 20 0dd NI BINIT INRWMOD

SOQUVYaNVLIS

NOTLdINIS3a

O -

L BUONTAVAWENDE ULOT ™Y e

Tagv

41




OLD/NEW
MASTER FILES

N

STAHDARDS
FILE

(.

SYSTRUCT

SELECTICN
FILE

K

1

N

REPORT

Figure 3-16. SYSTRUCT Data Flow

D

——ry v 'r' -eepey e -




oL,

all standards defined in the software standards file which have been
violated by that module are listed. The value of the standard
calculated for that module is shown, along with the permitted range of
the standard.

p. Software Standards Violations Summary Report (see figure 3-14). For
each standard defined in the software standards file, the number and
percentage of modules which met that standard are shown, and the number
and percentage of modules which violated that standard are shown. Ad-
ditionally, the quality valucs are summarized for all the modules and
1isted individually for each module (see figure 3-15).

3.3.4 SYSTRUCT. SYSTRUCT provides analysis of system configuration changes.
Figure 3-16 shows the data flow between SYSTRUCT and the rest of the PFA system,

SYSTRUCT reads two master files representing different versions of the
software system under analysis, Thé SYSTRUCT report lists changes in variables
used by each module, changes in software quality parameters (the ones reported
by SOFTPRO), and modules which have been added to or deleted from the current
version of the software being analyzed. The changes are of two types: those
affecting executable codv and those affecting code documentation. When changes
affect executable code, a selection file containing a 1ist of module changes is
generated for use by PATCHANA.

3.3.4.1 SYSTRUCT Input Requirements. SYSTRUCT requires two master files as
input, one for each version of the program to be analyzed. See paragraph 3.2.3
and appendix B for the master file description.

SYSTRUCT also requires a standards file for the standards file description.
A description of the file and its layout is given in paragraph 3.2.3 and in ap-
pendix B.

3.3.4.2 SYSTRUCT Initiation Procedures. Following is a description of a SYS-
TRUCT termminal session.

SYSTRUCT may be run from any interactive terminal connected to the VAX. As-
suming that the user has logged onto the VAX with the correct password, he can
run SYSTRUCT by entering the following command:

$PFA
(respond to menu prompt for SYSTRUCT)

SYSTRUCT will then prampt the user for the following information:

COMMAND/RESPONSE EXPLANATION
ENTER OLD MASTER FILE NAME, WITH The entered old and new master file names
EXTENSION are the names of the master files for
MOLD .MST the old and new versions of the programs
ENTER NEW MASTER FILE NAME, WITH to be analyzed.
EXTENSION

MNEW  MST




COMMAND/RESPONSE EXPLANAT ION

ENTER REPORT FILE NAME The entered report, file name is the name

M.REP of the disk file to contain the output
SYSTRUCT report.

ENTER STANDARDS FILE NAME The entered standards file name is the

M.STD name of the standards file to be ref-
erenced during this run.

ENTER SELECTION FILE NAME: The entered selection file name is the

M.SEL name of the disk file to contain the out-
put list of moduics having probable code
changes.

DO YOU WANT STRUCTURE CHART? If requested, a structure chart for the

YES new version of a module will be output in

the report on each module.
SYSTRUCT will then complete the report generation with no further prompts,

3.3.4.3 Files Used in SYSTRUCT Processing, No temporary files are used.

3.3.4.4 SYSTRUCT Recovery and Error Correction Procedures, In the event of a
hardware error which temminates the program, the user must start the program
from the beginning. In the event of a fatal software error while running SYS-
TRUCT, the user should check to make sure all files exist and are not attached
to another program, and rerun SYSTRUCT.

3.3.4.5 SYSTRUCT Limitations. No limitations are known,

3.3.4.6 SYSTRUCT Sample Outputs. Figure 3-17 presents a sample porticrn of a
SYSTRUCT report. This report shows, at module level, differences in subroutine
calls, number of paths containing subroutine calls, and software quality metrics
between two versions of a system. The report consists of a series of mini-
reports, one for each module which has changed between versions. Each mini-
report has two to four parts, First, the report begins with a header line con-
taining the module name, description, and starting page numbers of beoth versions
in the encoder listings. Second, the report contains an optional structure
chart, similar to the STAMP structure chart, for the new version of the module.
Third, the report contains a 1ist of the differences between the versions of the
module. The list is headed by the version information for the old and new mod-
ules. The list contains common, added, and deleted subroutines if changes in
subroutine calls have been made, and software metrics with values that differ
between versions. Fourth, the optional last line in the report describes the
probable levei of change in the module. If a software code metric value has
changed, a code level change is indicated; if a software documentation metric
value has changed, a documentation level change is indicated.

3.3.5 PATCHANA, PATCHANA performs software patch (source code change) anal-
ysis. Figure 3-18 shows the data flow between PATCHANA and the rest of the PFA
system,

44




140d9Y 1INYISAS *LT-€ d4nb4

L1 o SHivd 30 H¥ITWON Y101
o (] S300M 20 HIgWW
18/€1/€ dON  dMIVONY 'NOISHIA M3IN 18/€1/€ . dON  dYLVONY NOISH3A @0 )

(L8 ‘30¥d M3IN'LB 30vd G0)VLIYA ANYIINNHNOD 3AIID3Y HILNI - ADIHWI 'JUYN 3INaowW

IoNYHY 3900 3IVAONd

LET sct 3zis Ivvuals

&% ] ‘SHiYd # y3nAn ving

L1 7] 53I0N 40 H3CWYI
19/€t/€ Ain JdLIINNY NOTSHIA MIN te/c1/e dON ddLINNY NOISY3IA 00

(86 30Vd MIN'L6F 30Vd GI0)SONVIHOD GINNY I NI Yiva GNVHHOD IVILNIIOd 30vd - 2dAHI (YN 3K

— - ——— o —————

JOMVHI 300> 319V a0Yd

ot sC BI1S IWAES

) 4] ‘SHIYd 0 HIDWNT Twi0d

! 0 SITON 40 B

0 1 ISIWLS 3ANIT 1AW 40§ Vil

1 E CEINITY ANRIOID NG J0G NIMEW

[¢]] £ ] ‘SINIIILVYLE A0 WIMUNN TIVLOL

HIWIAY WO IAdN 8IMI0K 03431307320 Y
WIHIYS HIHIYS BIWVION HOWND

; AITVI SINLLNONONS
1a/e1/€ dIN dYLVItY NOISYHIA MIN te/c1/€ dON dULYINY NOISY3IA G0

19ng30
WIYAHIS
. NNYNIG
1ong3q
NHOWNT
tenn3g
NUWIND
HOUDdd
WO 2agdn
HIHINS

AYMIIID

FNA0OH NOISMN3A MIN 40 IYNLTNNLS

IDNVHI 3900 3N0vAONd

9y . e 3718 3°vHOLS

(1 I [+ ‘BHIVd X N3ITHNN vand

117 [+] ‘S3IQON 4C YIOW N
tR/€1/E doN dILINNY 'NOLISHIA M3IN 18/€1/¢€ © dIN dJI13INNG ‘NOISH3IA Q0

(PLE :30¥d MIN'PLE 3TVd TI0ILINIVE VD 3UVIND ~ IVdVYTD Aavd I3100W

IONYHI 3100 30va0ud

45

(06 “30vd MIN'06 30Vd GQICIVIVE LINVIITNMHOD GLldvd ¥ILINI - AVMIHD 3MvN w._Da.utllM



MOL4 BleQ YNYHILYd ‘8T-€ a4nbid

14043y

VYNVHILYd

-~ .
. L1suns 1359nS
WNIWY3IL 1714 0 1114 0 3714
NO1L9313S | YILSVW MIN Y3LSVH 010

v

46



CRRETS

e

PATCHANA reads two master files or subsets of master files representing two
versions of the software being analyzed. Selection can be made interactively or
via the selectior file, which contains a 1ist of modules to be compared. The re-
port lists the path segment structure for both versions side by side and
indicates (with codes and arrows) the location of differences and what was
changed for each version, When structural differences occur, the differences
are flagged from their start either through the remainder of the module or to
the point where the structures of the two versions are congruent. PATCHANA
finds differences in structure, subroutine calls, variable usage, and the three
quantifiers,

3.3.5.1 PATCHANA Input Requirements. PATCHANA requires as input two master
files, or subsets of two master files, one for each version of the system to be
analyzed., See paragraph 3.2.3 and appendix B for the master file description,
If a subset of a master file is used, it must contain the data for all the mod-
ules to be analyzed.

PATCHANA also requires as input a 1ist of modules to be analyzed. This list
may be entered interactively, as described below, or the 1ist may be input as a
selection file, as described in paragraph 3.3.3.

3.3.5.2 PATCHANA Initiation Procedures. PATCHANA may be run from any inter-
active teminal connected to the VAX. Assuming that the user has logged onto
the VAX with the correct password, he can run PATCHANA by entering the following .
command:

$ PFA
(respond to menu prompt for PATCHANA)
PATCHANA will then prompt the user for the following information:
PROMPT /RESPONSE EXPLANAT ION
ENTER OLD MASTER FILE NAME: This is the name of the subset of the
MOLD .MST master file containing information on the
- old versions of the modules to be
processed,
ENTER NEW MASTER FILE NAME:
NEW.MST New second master file to compare against
- old first.

ENTER REPORT FILE NAME:
MST .LST Report file where the results of the

change analysis are stored.

3.3.5.3 PATCHANA Limitations, PATCHANA cannot process multiple entry points.

3.3.5.4 PATCHANA Sample Qutputs. Figure 3-19 is a sample PATCHANA report.

This report shows path level differences between module versions. The report
consists of a series of mini-reports, one for each module, Each mini-report
consists of two parts, a header, and a patch comparison list. The header con-
tains the module name and description, The list consists of three se:s of col-
umns: a description of the old paths, a description of the new paths, and a de-
scription of the differences between the two patns.

47




340d3y YNYHILVd

*61-€ @'nby4y

M N ﬂ
1 i
1 € ov ‘¢ (LIX3)11X3 (&1)060£00 E€EE Y € ' 13 S - CLIX3)LIX3 (61)0T0E0C EE <--—10 |
1 a &€ L {(561)060E£00 (BI)O+0CO0 Z2E it a SE L (61)030€00 (81)010EQQ ZE
1} a Gt ¢ {11)01L200 (81)040€00 1E i} ) € ¢ (11189200 (B8Y)010€E00 1€
| L el e (11)012200 (81)0+0€00 OE ¥ L €1 '? (11)LE9200 (81)010£00 0OC€
‘onyoad i ‘anydaa <-——£0
v [ ot Lt (81)0¢CECO {L1)ZE0E00 6T i€ [ o1 LY (81)010€00 (LY1)ELLE00 6T <«<-—-EO
1 € 32 4 (L1)ETOEL00 (?11610€00 BZ iV € 06 9 (LY)TLLE00 (21)¢9L200 B <£~---10
1 a8 o9 ‘81 {(?11810€ECO (S1)000E00 LZ i} e 08 '8y (?1)19L200 (QY¥)LvLEZO00Q L&
1 a 03 '8¢ (L1)280€00 (81)000€00 92 iV e 08 ‘8t (L1)E8LL20C (€V)Lbi200 9
T € SE ¥ (S 1)000€00 (¥1)ELLE00 &Z Y e 08 'Ot (S1)LveE0n (¥1)LEL200 € <-—21D
1 € cE 'y (£3)E2Z0E00 (¥1XELLZOO0 #Z i1 < 08 ‘Ot {LY)YELLEGO (¥1)LELE00 ¥ <C-~-210D
'XLUNLD i ‘XAUNLO ‘NVHLIYHLO <~---5210
9 (-1 €O Ly (¥ 1)ELLTOO (E1)ZTLZ00 €T 9 €z €4 OV (¥1)LE/200 (E1) 1£L9800 £ <-—S8C10
‘XLUNLOD i ‘XLUNLO ‘NYHLIYLD C--——5210
9 L3 &8 "Ly (L1)TE0EQO (EI)CZL200 22 9 €e 6 'OF (L1)YZLL200 (ET) 1£9800 & <(---5Z10
‘XLYUNLD i ‘XL1UNLO 'NVHIYMLD C~~-5C10
9 1 2 <9 ‘9 (L3I230€C00 (ET122£200 12 9 bt €L 6C (LV)2LL200 (ET) TL9800 & <L---SC10
1 k-4 Y '€ (EV)Z&L200 (Z1YLTLE00 OC ¥ : t4 ey € (EV)1L9200 (211999200 O
¥ 4 [~ 2 > (81)0¥0E00 (ZI)LTLZ0O0 6T Y 4 €y € (B81)010C00 (Z1)999200 61
| 1 4 oc L (Z¥)YL1L200 (11)01L200 B8F T 4 0z 'L (Z1)999200 (311)£89200 8B1
! 1 4 oc ¢ (€E1)2ZL200 (T1)0TLZ00 LT iV 14 o L (EV) T1L9200 (112489200 LT
L4 4 c6 L (11)01£L200 (O1)EOLZ00 91 & 1 4 §6 L (11289200 (01) 289200 91
4 € SE ¥ (01)EQLEZO0 (6)LL9200 €1 iV € cE v (0112€9c00 (6)Fv9200 6T
1 € (<1208 4 (461)060€00 (6)Y2L9200 ¢1 it € [M8 (6120Z0€00 {(6)FVF200 ¢
1 Z [ 4 (6)LL9200 (B)ELI200 €T T - Z €9 v (6)9v9200 (B)YZTYC00 €1
1 v [~1- W (8)EL92CD (L)999200 1 Y v €6 'S (8)Z¢9200 {£rs€9c00 21
1 1 4 -2~ (6)LLITO0 (£L)999200 ¥ it | 4 66 'S (6)9¢9200 (L)GEFS00 17
] ] oc 1 (61LL7T00 (91699200 OF ¥ 1 oz 'y (6)Ft9200 (?)EF200 OF
4 L4 $0 £ (9)%779200 (G)949200 6 it 9 €0 L (9)E9200 (€1629200 &6
1 9 €0 ¢ (E)EECFS00 (8)9¢9200 B ! 9 €0 ¢ (E€)$09200 (S)GZYZ00 B8
4 < &8 '€ (E1EEF200 (S)FEFE00 L it < €8 ¢ (E)Y$ 09200 (€1QC9200 ¢
1 4 L oL '¥% (£)9679200 (¥)T1¢9200 9 it 9 st et (€)SEF200 ($)ZT19200 9 Ce—Z10
1 1 00 £ {r)I+9200 (EYEEPZ00 € ¥ 1 00 ¢ {(vr)Z 19200 (E)$0F200 €
1 1 4 00 £ (€)969200 {(E)EE9200 ¢ it 4 00 ¢ (€)C2F200 (E)Y09200 ¢
1 ! 06 0 (E1EETES00 (TYZEFS00 E il | 4 06 'O (E)Y¥09200 (Z)E09200 €
1 4 a 00 12 (Z)TEF200 (1)ziqe00 & it 8 0og 12 (Z)EOF200 (1)YEQ9Z00 &
1 4 a 00 12 (L)999200 (1219200 1 114 8 og 12 (L)GSEFS00 (1)EFCE00 ¢
— PR S ——
€ s 14 NOILJINIS3A ANIWOIS Hivd WNNE - I NOIL1dI¥IS3IA AINIWOIS HIVd WNN JY3H
SYIISIINYND Hivd i SH3I 41INVND Hivd A3ONVHD
(Ly9 :30vd)IB/ET/E dIN dIWASN (L¥9 30V XOWNSNE 08/90/¥0 JOWASN 'NOT SH3N-

INYDINOKWND GITVA YIA OSH S,3AILIWNI aina | :...<z;w 1

e e e g e e N R T T T AN T AR I T Ty TN S TR N T e T SN RN FRTIN

48




The description of the differences between the paths is first., The de-
scription consists of a series of flags indicating the types of differences
found. The flags are:

QC11[2]03] Differences in quantifier(s) 1 and/or 2 and/or 3
P Difference in successor paths

N Difference in successor nodes
) Difference in subroutine calls
v Difference in variable 1ists

If no differences are found, this column will be blank. This description of
the differences between paths will be repeated for every line of the path de-
scriptions.

The description of the old paths is second, and the description of the new
paths is third, The descriptions contain the same information and have the fol-
lTowing format: Each description is headed by the version information for the
module being described. This header is followed by six subcolumns., The first
column contains the number of the path being described. The second column con-
tains the label and, in parentheses, the number of the from node for the path.
The third column contains the label and, in parentheses, the number of the to
node for the path. If requested, the second and third columns may contain —
source sequence numbers rather than labels. Columns four through six contain
the values of quantifiers 1, 2, and 3, respectively. Following the column
information for each path, the path description contains a list of the sub-
routines called in the path and a 1ist of tne variables used in the path. Each
variable entry in the variable 1ist consists of the variable name followed by a
colon, optionally followed by variable type, followed by a colon, followed by
variable use. The variable use entry must be one of the following:

D Defined

R Referenced
T Tested

M Modified

3.4 Utilization of System Qutputs.

3.4.1 STAMP Reports,

a. The external procedures report (figure 3-7) 1ists subroutines which are
called but are not part of the software being analyzed. These sub-
routines are usually a part of libraries supplied with the operating
system or compiler for the system being analyzed. If subroutines are in
the 1ist, and should be in the software being analyzed, then those sub-
routines are missing.

b. The structure chart (figure 3-8) shows the subroutine call hierarchy,
starting from task or program level (level 0) through each level of sup-
routine call to the lowest level. The subroutines called by the task
level programs are level one, the subroutines they call are level two,
etc. Each level is shown on the chart indented to the right of the
higher level, The subroutine name is given and, as an option, a brief
description is given. External subroutines and recursive subroutines
are marked as such,

49




ol M Al A Al

¢. Thne function list (figure 3-9) lists the highest level procedures in

d.

the software under analysis, i.e., at the program or task level,
procedures which are not calied as subroutines.

The module list (figure 3-10) 1ists all procedures and entry points in
aiphabetical order, The columns in the report are procedure name,
task/subroutine flag, page, description, top call level, bottom call
level, and version information,

The procedure name contains the name of the task, subroutine, or entry
point. The task/subroutine flag shows an “S" if the procedure is a
subroutine, a "T" {if the procedure is a task or is not called by an-
other procedure, or an “E" {if the procedure is an unused or uncalled en-
try point in a module with multiple entry points. The page and de-
scription are supplied by the master file, as determined by the encoder,
The top call level is the highest level on which the procedure is
called. This is zero for a task or unused entry point, one for
procedures called by them, etc. The bottom ievel is the lowest level at
which a subroutine is called. Again, tasks and unused entry points have
a level of zero. Procedures which have little or no difference between
top call level and bottom call level are most likely a “single use" or
"Jimited use" routine. If there is much difference between the top call
level and the bottom call level, the procedure is more likely a utility
ro*tine. The version information is taken directly from the naster
file.

The HIPQ chart (figure 3~11) gives detailed information about each
procedure. “Subroutine Definition" or "Task Definition" heads each
procedure listing. This is followed by the procedure name, short de-
scription, page, and version information, all of which are extracted
from the master file., These are followed by a 1ist of modules calling
the procedure; this is not shown if the procedure is a task. Next is a
1ist of modules called by the procedure; this is only shown if the
procedure makes subroutine calls. Next is the list of entry points (not
shown on example). This list is produced only if the procedure contains
multiple entry points. The prologue copied from the master file fol-
lows. Then, the inputs column lists the variables which are referenced
(but not modified) by the procedure. Variable type infermation is
included. Next, the processing column has a description of each path,
using both labels produced by the encoder, and sequence numbers from the
orig®nal source as processed by the encoder. This allows the user to
see how the structure represented in the processing coiumn relates to
the original source code, The processing column also contains comments
extracted from the original source by the encoder; quantifiers, which
are quantities such as time, statement counts, etc.; and a list of sub-
routine~ called on each path. Finally, the outputs column lists all of
the variables, with their variable type information, which are mcdified
on each path., The inputs, processing, and outputs columns can be used
to check the HIPO charts in the Program Design Document CPCI's for ac-
curacy.

50




3.4.2 SOFTPRO Reports.

a. The SOFTPRD detailed report (figure 3-13) lists each procedure and the
standards it violates. First, the name of the procedw: e, description,
version information, and page number are extracted from the master file
and printed. Then the software quality metrics for the procedure are
compared against the software standards and the violations are listed.
The first column of the list of violations contains the description of
the standard. The next column contains the value provided (or
calculated) for the software being analyzed. The next column has the
"permitted range," which is the range of values which the value pro-
vided for the software must fall within to meet the standard. Finally,
there is a reference to the document containiny the standard (where ap-
plicable). :

b. The SOFTPRO summary report (figure 3-14) summarizes the violations of
the standards. The first column contains the description of the
standard. The next column contains the number and percentage of
procedures which met each standard. The next column contains the number
and percent of procedures which violated each standard. The last column
provides a reference to the document containing the standard. Ad-
ditionally, the quality values are summarized for all the modules and
listed individually for each module (see figure 3-15).

3.4.3 SYSTRUCT Report. The SYSTRUCT report (figure 3-17) shows differences in

subroutine calls, variable usage, and softwa.'e quality metrics between two
versions of the software under analysis. First, the name, description, and page
number of old and new versions are p~"ated. If the option for new structure is
set, a structure chart similar to the STAUP structure chart is printed for the
structure of the new version of the procedure. Next a header is printed; this
conteins the version information for the old and new versions. If changes in
subroutine calls are made, the subroutines called which are common to both
versions are listed; then the subroutine calls which have been added or deleted
are reported. Next, the software metrics for which values have changed are re-
ported. There is also a flag with e2ach metric to associate it with either a
change in executable code or a change in program documentation. A change in ex-
ecutahle code supersedes a change in program documentation., The probable type
of change or "no change" is flagged upon completion of each procedure.

3.4.4 PATCHANA Report. The PATCHANA report (figure 3-19) lists the structure

of two versions of a procedure side by side and shows where differences are.
First tie name and description of the procedure are given, Then a header con-
taining the version information for the old and new versions of the procedure is
printed. The rest of the report is in three sections: the change indicator,
the old version, and the new version. The change indicator can flag either a
structural change or a change in attributes for the particular path. A
structural change is flagged by a "P" for path or an "N for node, where the
change is & change in the execution path due tc branches being added or deleted.
A change in attributes for « particular path is a change in the subroutines
called, variables used, or one or more of the quantifers changed. These changes
are flagged by "S", "V", or "Q" followed by the quantifier numbers. The old and
new version sections have the same format--the path number, and path segment
description followed by the values of the three gquantifiers. If subroutines are
called, they are listed on the next line.

51




APPENDIX A

¥

TERMS AND ABBREVIATIONS

ol
r

A-1




B

COMPRO
DEC
DECUS

Encoder

External procedures

HIPO
HIPQO chart

MACROSPITBOL

Master file

Module
Node
PATCHANA
Path

PFA
PFALIB

Program structure

Quantifiers

RATFOR/RATFIV
SOFTPRO
Sof tware patch

Software system

TERMS AND ABBREVIATIONS

Comment Processor.

Diqital Equipment Corpcration.

DEC User Society.

A program which reads the source code for the system
being analyzed and creates a master file for use by
other PFA programs,

Procedures which exist outside of the software being
analyzed, e.g., operating system utitities.

Hierarchy plus Inputs, Processing, and Qutputs.

A chart relating inputs and outputs to the processing
algorithm which uses or creates them.

A SNOBOL4 compatible interpreter f~r the VAX.

The file which contains a representation of the
attributes of the software being analvzed.

A separately compilable procedure or subroutine.
A point of decision in execution path selection.
Patch Analysis Prngram.

A segment of instructions which does not contain any
branches.

Program Flow Analyzer.

PFA Library.

Graph of the sequence of all possible paths which may be

executed within a program.

A value which quantifies or totals some attribute on a
path.

A structured FORTRAN translator.
Software Profile Program.

A change in source code.

Consists of one or more computer programs which perform

one or more related functions.

A-2

I .:) '

1




STAMP

Standards file

Structure chart

SYSTRUCT
TECOM
K USAEPG

TERMS AND ABBREBIATIONS (Cont'd.)

Structure, Timing, Analysis, Modeling Program.,

File which contains user-entered standards in a
prescribed format.

Shows a subroutine call hierarchy in the form of a tree
graph.

System Structure Comparison Program.
Test and Evaluation Command.

U.S. Amy Electronic Praving Ground,




[N
E
. |

b
’.
3
1
. APPENDIX B
5
P MASTER FILE
L

1 AND
G \e
i STANDARDS FILE DESCRIPTIONS
i

B-1



[ 3

Al

LIS Y

v 'v—v-vv«wvury'v -

"~

i ase i A2 4

RECORD TYPE

T MODULE NAME
5
10
____ MONTH
5
DAY
T YEAR
20 HOWR
T MINUTE
~ MODULE DESCRIPTION
25
30
35
0
.53
50

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: O *

50

~~ MODULE DESCRIPTION,
~ CONT.

NERRRRERRRREREREE

Figure B-1. Library Routine Definition

B-2




RECORD TYPE

T MODWE NAME
5

10

T MONTH
15

DAY

~  YEAR

20 HOUWR

T MINUTE

RN RCERN RN RERNRNEN

MODWE DESCRIPTION

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 1 *

MODULE DESCRIPTION,
CONT.

RENRRREREERERRREERRRRLE

Figure B-2. Task or Subroutine Definition

B-3



RECORD TYPE

NEN

PAGE NUMBER

SOURCE SEQUENCE
NUMBER

gl trrgrrrisl

VERSION INFORMATION

D1SK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 2 *

wn
o

VERSION INFORMATION,
CONT.

NERRRRERRREERRRRERRN

Figure B-3. Listing and Version Definition

B-4




RECORD TYPE

NN RN R EREEE EEE R ER R EER R RERR AR R

PROLOGUE COMMENT

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MACTER FILE

RECORD TYPE: 3 *

PROLOGUE COMMENT,
CONT .

NERRRRERRRRERRRRERRRR

Figure B-4. Prologue Comments

B-5



RECORD TYPE

FROM NODE LABEL

NEERRRRERERRER

TO NODE LABEL

NEERRRRE

QUANTIFIER 1

ENRRRE

START SEQUENCE
NUMBER

END SEQUENCE
NUMBER

mllh N
o Y o

BRANCH SEQUENCE
NUMBER

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 4 *

QUANTIFIER 2

NENRRREERENGE

QUANTIFIER 3

NERNREN

Figure B-5. Path Definition

B-6



RECORD TYPE

FROM NODE LABEL

5

13

T 10 NODE LABEL

5
~_CONTINUATION FLAG
20

SUBROUTINE CALL
LIST

glitiE Tt

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA
FILE: MASTER FILE

RECORD TYPE: 5 *

wn
o

SUBROUTINE CALL
LIST, CONT.

NENRRREREENENNREE NN

Figure B-6. Subroutine Calls Informaction

B-7



RECORD TYPE

FROM NODE LABEL

BEERRRRERRRRER

TO NODE LABEL

AR ERERREREREE R R R

VARTABLE LIST

Figure B-7.

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 6 *

VARIABLE LIST,
CONT L]

NERRRRERRREERRREERRERE

Variable Iaformation

8-8



RECORD TYPE

FROM NODE LABEL

RRENNRNERRERNN

TO NODE LABEL

ST T T T T T =TT T 115

COMMENTS

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA
FILE: MASTER FILE

RECORD TYPE: 7 *

o
o

COMMENTS, CONT,

PRI TIT I TT T 1T

Figure B-8. In-Line Comments

B-9




RECORD TYPE

e

SOFTWARE QUALITY
PARAMETER 1

=
o

SOFTWARE QUALITY
PARAMETER 2

=N

SOFTWARE QUALITY
PARAMETER 3

N

SOFTWARE QUALITY
PARAMETER 4

1S

SOFTWARE QUALITY
PARAMETER 5

(9%
o

SOFTWARE QUALITY
PARAMETER 6

| (R
(82

SOFTWARE QUALITY
PARAMETER 7

|18 |

SOFTWARE QUALITY
PARAMETER 8

1 |

SOFTWARE QUALITY
PARAMETER 9

o
o

SOFTWARE QUALITY
PARAMETER 10

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 8 *

SOFTWARE QUALITY
PARAMETER 11

(8} on
O N

SOFTWARE QUALITY
PARAMETER 12

EN

SOFTWARE QUALITY
PARAMETER 13

HEN

SOFTWARE QUALITY
PARAMETER 14

=N

Figure B-9. Software Quality Information

B-10




DISK/TAPE RECORD LAYOUT

RECORD TYPE

SYSTEM: PFA

ENTRY POINT NAME ' h
FILE:  MASTER FILE |

RECORD TYPE: 9 *

P
o [3

T LINK
5 50 :
_ " ENTRY POINT :
— ~— DESCRIPTION, :
— —_ CONT.
4 55
START NODE LABEL -
&0
) 5
ENTRY POINT _
DESCRIPTION —
i)

R RN RN

Figure B-10. Entry Point Definition

. : N
l o E



66666666 ‘0

-*m.ooo

66666 ‘0

65-0
£2-0
66-0
1e-1
cl-1

..ﬂ.—...

..<.O.

JINVY

0¢

{5

Uel

0S

01

z1s
RERE |

(VNVHO LYd ‘0Yd14CS
“10NY1ISAS “dWV1S) NOISY3IA

(YNVHO L¥d “0Yd140S) D3S
(19NY1SAS “dWviS) D3SIYSL

(VNYHOIVd ‘0¥d140S) 39vd
(1ONYLSAS *dWY1S) 39vdlL

(YNYHI1Vd “0Yd140S) 2530
(LONYLSAS “dWVIS) 25301

VYNVYHI LVd ‘0¥d140S) IWYNCGOW
(LONYLSAS “dWY1S) HWYNISYL

(YNVH21Vd) @
(1DNYLISAS  dWYLS) 3dAL1D3N

(SWYY¥904d) SavL

NOI1dT1¥3530 Q1314 3714 Y3ISWYW

anbojoud wodj BUL| JUBWWOD 3U( £
uoLjewaojut
u01SJ9A a{npow |euo}idQ 2
Butysty
92JNOS UL J|Npow JO 3JJels
30 Jaqunu aduanbas {euoiidQ 2
Bugasyt Japodud up dinpow jo
3J4e3S jJo Jaquinu abed |euolidQ 2
a|npouw jo
uot3dpaosap jaraq peuotidp 1
pasn 10N 1 ‘0
pasn 0N 10
pasn 30N ‘0
pasn j0N 1 °0
pasn 30N 10
(snbrun
3q 3ISNw Inq) AJessadau i
pajeosunsy ‘aweu a[nNpoy 1 ‘0
9dA3 pua0d3Jd sajoua( 6-0
350dynd # GY0JI3Y

"1 379Vl

le

Juawwo?) anboodd
uoLjeuwaou]

UOLSJ3A

Jaquiny
ssuanbag aosunos

JaqunN abeyd

uotadrdaoasaqg
3| NPOW

33NU LW
)

JNOH
Jeaj

feg

YIUOW

BweyN 3| NpoKW
ad/f] paod3y

JWVN




uotjenuLjuod Q<
uol3enuLuod
e 30N 0=

Jaqunu [2aJ
40 Jabajutl

Jaqunyu [ead
J0 Jabajujp

66666666-0

66666666-0

66666666-0

Jaqunu
jead 40 J43abajul

JtJ9quny
Jo eydiy

JLJawny
Jo eyd|y

JINVY

pJed g adk3 snolaaud
9yl JO UOL3eNULIUOD
9yY3 st pJed g ad4y syl

(UREDE

(G3NNINOD

) SNOI1JI¥2S3Q G314 3714 ¥3ISYW °1 37gvl
1
o
Bt

1 (12NY1SAS) 1INOD Jayiaym burjeotpur piat4 G
J3poous3
03 JBpoJus wWoJy S3LJPA
01 (YNYHI1Vd “dWy1S) €INVND *Jatjtiuend yjed jeuotidg b
J3pooul
0} JOpOIU3 WOJ4§ SALJPA
01 (UNVHOLVd “dWVY1S) ZINVND *Jat4tjuendb yjed jeuvotadg v
paJJajsuesy st |0J3U0D
yorym o3 judwbas jo Jaqunu
8 (YNVHOLYd “dWV1S) dwrD3s 3duanbas adjJnos (euotidQ v
yjed jo pua jo Jaqunu
8 (YNVHOIVd ‘dWYIS) QN3B3S 3cuanbas ajunos euotidQ v
yied j0 34e3s jo Jaqunu
8 (YNVHOLVd “dWY1S) 1¥1S03S aouanbas aocunos euotidg v
01 (YNVHOLVd “dWviS) IiNvnd yjed jeuotidg v
paJ4J4ajsued)] SL [0JJUOD YDLYM
8 (VNYHD1Vd “dWViS) 0oL 03 juawbas jo (aqe| jue3s L~V
wesboud ut juawbas yjed bo
8 (YNVYHIIVd ‘dWVYIS) WOYd jutod 34e3s ButAatb aqeq L-¥
371S (SWYY¥904d) S9V1 350dYnd # Q¥023Y

be4
uoL3eNULILO)

€ JaLjtyuenp

2 Jatjtrjuend

Jaquny

ajuanbag youeug 2
1

Jaquny
9ouanbag puj

Jaguny
?ajuanbag ue3s
1 Jatjtuvend

1oqe]
3poN 01

13ge1

9pON woJd

3WYN

[ea]

L



J3633u]

JONVY

utl

01

S

YIpLM

40 yoead

Sptaty
14!

vs

14

IZ1S
((REDE|

(YNVHOLVd) 3Q0NIS
(dWV1S) 3JQONIYY IS

apou

3Je3s jupod ALujua jo (aqe

sJeadde Jujod Aujud

(YNVHILVd “dWYIS) JINIT

(VNVHOLVd) IWYNQOW
(dWYLS) JWYNASYL

Yojym U} 3| npow O auep

Aaessal’au j§ pajeosunyy
‘jujod A4jua jo swep

J3podud 03 J3podud uoJdy Auea
uaaib saajaweded (enioe ayy

(0¥d140S) $1SINTVA

*s|hpow Siyl 4oy J3jawesed

AjLLenb auem3jos awos Jo

(LONY1SAS) 83dAL
(dWY1S) INIWWOD

pP231S33 3|qejJeA ji
poutjap ajqejJden 4t
P3| JLPOW 3|qRjJRA J}
paJuaJ4a}ad a|qetJden ji

an|eA ayj saaib prary yoe3

324N0S WOJJ JUIWWOI Juf|-U]

1
a
H
4

:sseadde uoj0d puodas
ayy Jaljy "adA3 a|qepuea
Leuojido aya Jeadde Aew uojo0d

IsJ14 /Ul Jayyy

*SU0|02 OM]

AqQ pamo||0j S| dueu 3|qelJerA
9y} “*3uawbos yjed uy

(UNYHO LVd “dWV1S) T0DWAS

bupJeadde sajqejJeA jo IS4

*sewwod Aq pajededas ade
(1oNY1SAS) 111 spley “jusuwbas yjed uyg

(VNVHIIVd “dWYIS) N1¥ens

(SWvy90ud) SOV1

(G3NNTINOJ) SNOILdI¥IS3Q Q1314 3714 YIISVHW

Fnu

SLLed aujInougns Jo 3Ist]

35044nd

T 37avl

¥ QY00

-t

1aqe
9pON 3Je3S§
U]

awey
ugod AJju3

L NERE-N] -7
£3tend
dJeM] JOS§

JuU3Wuo 7

151
alqeyJep

ISET 1Led
aujinoaqgnsg

3INVN

B-14




8-15

(VNVHILVd) 2S30 *jujod vo}3diadsag
4’ (LONYLISAS “dnWYiS) 2s3al A43u3 jo uojidiadsap jajug 6 jujod Aaju3
JONVY 3718 (SWYY¥904d) SVl 3S04und f Q¥023y INVN

a31d

(a3INN1INOJ) SNOILI¥ISIA G314 3714 YIISVA °T 3TgVL

o |




IDENTIFIER

.
)

DESCRIPTION

.
Z

WEIGHTING FACTOR

.
2

LOWEST PERMITTED
VAL UE

-
2

HIGHEST PERMITTED
VALUE

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: STANDARDS FILE

VALUE OR
CALCULATION

.
]

CODE/DOCUMENTATION
INDICATOR

.
)

STANDARD REFERENCE

Figure B-11. Software Standards File Records

B-16




*(0t jo az|s unwyxew) pauyjap s} paepuers paqiJasap ayl CRITENEYEN

(044140S) 3IINF¥I4TY Yatym up ydeabeded pue jJuawniop ayjl 03 IduaJsayay pJepueis
uotiey
-udwnaoq (= (0¥d140S) 3002200 *PJEDURIS UOLIRIUSWNIOP B JO piepUR]S 3pOd Jojedlpul uoyy
8po) 0= (10NY1ISAS) I14INOIS e SL pJepuels paqiuosap ay3l -jeyy bupjesppuy beyy4 ~ejuldund0(q/apo)
\G°E°E°E u0}I23s 33S) ./ (1)
‘(5), st uoyssaudxa (eba| e ‘a|dwexa Jyo4 “°sasayy
-uaged uj @] s,pJepuels ayj Aq pP3JudJajad *spaepueis
pauljap A|snotaaud jo sanfea ayy pue *,/., pue
‘vxy “4=y ¢+, SJojesado a3yl “sjuejsuod o IS1su02
Aew pue votjejou ysyod asuanad up St vo)ssaJddxa
— (0¥d140S) ¥dx3als 3yl °spJepuels Jiseq 4Oy |{NN °spJepue3s paujjap
(1onY1SAS) NIAID =Jasn 4o angea ayy bupje(ndfes Joj uoissasdxa uy uoje|naye)
(04d140S) WAHDIH *pJdepuels an|ep
Jabaju] (LINYLSAS) WAXYW Stul Joy abues a1qe3darde ay3 Jo pus 4aybyy ayj pajyjuuag ISaYbyH_
(04d140S) WAMOT *pJepuels neAx
JaBaju] (L1INYLISAS) TWANIW St43 Joy sbues a1qe3dasde ay3 Jo pua samoy ay]  patljuuay 1S53m0
ja0day
jou 0qQ Q= *paje|ndted Ajasaw Jo JOlo04
1Joday 1= (1OnY1SAS “0¥d140S) IHOTIM pajJodas 3aq 03 si puepuels Jaylaym Bujpjesypuy bey4 bugaybyap
(0¥d140S) ¥Is300iS
(LONYISAS) 1d1¥IS30 (0¥ JO 3z1s wnwyxew) psepue3s ayy jo uojidpudsap y uojadiadsag
*spJepuels paujjap Aisnojaasd jo suuaj ui
Pale|ndied S| an|eA 3soym paepueys wP3U¢ jap-gasn,,
® JO S| uoy3djudsap ayyl ‘anpea Jayjo Aue sy q}
Y3 J1 °3(}J Jajsew 3y3 ujp paJols pue 4apolua 3yl
Ag pajeinoted sy anjea 9SOYM pJdepuels e ‘*paepuels
wJiSeq, 2 JO S} u013d}uIsap ayj ‘pi-1 woJj pue apaswnu
(0¥d140S) 139v104S S1 GI 343 J1  °sJajoedeyd (p) 4noy jo unwyxew
(L10n¥1SAS) xal *U011d}4053p paepuRls JO UOE3RI} }juap) anbyup 43} j13uap]
39NVY (SWvy90ud) Sovi 350dynd 3NN

NOT1dI¥IS3G Q1314 3714 GYVONVIS °*I11 319Vl
o {



APPENDIX G

PROGRAM MAINTENANCE MANUAL

G-1



PROGRAM FLOW ANALYZEx

PROGRAM MAINTENANCE MANUAL

JANUARY 1984



FOREWORD

- Ultrasystems Techrology, Incorporated, Sierra Vista, Arizona

assisted in the preparation of this document under
Contract Number DAEA18-83-C-0003.

ii



TABLE OF CONTENTS
VOLUME I

2
®

t

GENERAL DESCRIPTION
.1 Purpose of the Program Maintenance Manual
2 Project References
.3 Terms and Abbreviations

SECTION

. SYSTEM DESCRIPTION

System Application

Security and Privacy

General Description

Program Description
1 Encoder (AUTOxxxx)
2 Comment Processor (COMPRO)
3 Structure, Timing, Analysis, Modeling Program (STAMP)
4 Software Profile Program (SOFTPRO)
5
6
7

SECTION

System Structure Comparator {SYSTRUCT)
Patch Analysis Program (PATCHANA)
PFA Library Routines (PFALIB)

ENVIRONMENT
1 tquipment Environment
2 Support Software

.3 Data Bases
3
3

SECTION

1 General Characteristics
(1;‘ .2 Organization and Detailec Description
PROGRAM MAINTcNANCE PROCEGURES
Conventions
Maming Conventions
Commenting Conventions
Verification Procedures
Error Conditions
1 COMPRO
2 STAMP AND PATCHANA
3 SOFTPRO
Special Maintenance Procedures
Special Maintenance Programs
Listings
Software Failure Report Summary
Overall PFA
STAMP
PATCHANA
Future Program Improvements
Master File
STAMP

QOO WVNAI NN B WL W LN
e e
W N - ’ N

.
N

Z
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
SECTION 4
a4
a
4
4
4
4
4
4
4
3
4
4
4
4
4
4
4
a

[Yolee oo NacNoelos) GrOYOY DNOT NP MN s



e

APPENDIXES

Terms and Abbreviations

VOLUME 11

HIPO Charts
Structure Charts
Procedure File Listings

Program Listings

jv

Page

A-1

B-1
C-1

E-1




LIST OF FIGURES

Figure

Structure of the PFA System
Library Routine Definition

Task or Subroutine Definition
Listing and Version Information
Prologue Coamnants

Path Definition

Subroutine Calls Information
Variabie Information

In-L ine Comments

Software Quality Information
Eatry Point Definition

Software Standards File
Software Standards File Records
A Samnle PFA-Commented Source Program

[ I T I

N - O

= = = O 00N O B WP

LIST OF TABLES

Tabla
3-1 Master File Field Descriptions
3-11 Scandards File Field Descrintiors



SECTION 1, GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual. The obizctive of this Program
Maintenance Manual for the Program rlow Analyzer (PFA) system, TECOM Project
Number 7-C0-RD0-EP1-004, is to provide the maintenance proygrammer presonnel
with the information necessary to effectively maintain the system.

1.2 Project References. PFA is a software analysis system. It consists of
various programs which identify software gquality, program structure, and
program features which aid or interfere with program maintainability.

PFA is sponsored by the U.S. Army Electronic Proving Ground (USAEPG) at
Fort Huachuca.

The following are PFA documents of interest to the maintainer.

USAEPG, Program Flow Analyzer Users Manual, 30 November 1982, UMCLAS-

SIFIED

USAEPG, Program Flow Analyzer Plan, 30 October 1982, UNCLASSIFIED

USAEPG, Methodology Investigation Propcsal--Program Flow Analyzer,
March 1979, UNCLASSIFIED

USAEPG, Program Flow Analyzer A-Level Specification, 4 April 1980,
UNCLASSIFIED.

1.3 Terms and Abbreviations. Temrms, definitions, abbreviations, and acronyms
are included in appenaix A,




SECTION 2. SYSTEM DESCRIPTION

2.1 System Application. PFA is a software tool used for automating the an-
aiys:s of a software system to identify software quality, program structure,
and program maintainability. PFA performs the following functions:

a, Software documentation aid

b. Program structure analysis on the system level

¢. Program structure analysis on the module level

d. Software quality analysis

e. Analysis of system configuration changes

f. Software modification analysis on the module level

PFA can automate review of design-level snecifications and code, software
quality metrics, and comparison of different versions of software which are
normally performed manually. PFA generates reports that can be compared to
design specifications; this reduces effort needed to trzce from code to design
specifircations, PFA computes and compares software qualilty metrics to user-
selected software quality standards, thereby automating the software quality
assessment. PFA compares two versions of software, first an overall com-
parison and then a comparison of selected modules, and generates reports which
identify changes.

2.2 Security and Privacy. The PFA system is unclassified and is currently
set up to identify all output as unclassified,

2.3 General Description. The structure of the PFA system is presented in
figure 2-1.

2.4 Program Description. The following paragraphs provide a description of
the PFA programs: AUTOxxxx, COMPRO, STAMP, SOFTPRO, SYSTRUCT, PATCHANA, and
PFALIB. The encoder program (AUTOxxxx) 1is specific to the language/machine
combination being analyzed. Only details applicable 1o encoders in general
are provided here. The remaining PFA programs are generic in nature. HIPO
and structure charts for these programs are included in Volume II, Appendix B
and C. PFA programs are written in MACROSPITBOL with the exception of
SOFTPRO, written in VAX FORTRAN.

2.4.1 Encoder (AUTOxxxx). The encoder ts a front-end j.rogram to the PFA sys-
tem, which translates computer/software/language-specific programs into a re-
presentation which is stored in a data base called the master file. This
master file is then read by other PFA programs that generate reports. The en-
coder is customized for each application to accommodate the specific
machine/language combinatinn of the software beirg analyzed.

2.4.2 Comment Processcr (COMPRO). COMPRO extracts and processes comments for
creating documentation. CUMPRO reads program source code files that contain
comments in a specific format. The information contained in these comments is
used to creite a master file tnat can be processed by ather PFA programs to




generate reports used for program documentation. PFA programs are commented
in tnis manner to provide automated HIPO and structure charts for the PFA sys-
tem,




wa1SAS VYid 3Y3 4O 34n3onu3s  °1-2 9u4nbyyg

=

140434

YNNVHILYd

ERIE!
NOI13373S

ONILSIT
¥311dH0
"7 w0 3003

_N uum:om

1¥0d3y  [----4  LONYLISAS |
\ /l i
Y [N
\ 34 \-eeeeeJLNANT ¥3SN
\ ) SouvoNvLs
Pt 7/ wnidos
1¥0d3¥ [ owdedos N
// aa
« \
LY aa
L e . ---:... ERDE| ceeaed  (43pOOUR)
3114 Huon 401103 /] Y3ILSYW \ /) XXXXQLOY
u \ s\
LSI7 ; A
3INA0N K Y
.P&On_wm --- GZm._vmmg \\\-\ / ON&&ZOU
NOTLINNS /
1YvH) oa_z----aj dHLS
1¥YH)
JUNLINYLS
14043y
$3YNQ304d
TYNYILX3
s
Y L VL AN TR

¥ . NN ¥ B e . ..
B .’.-I)...nl.li{.b'.tl'.lft.rp!b.rL'Lr!V;P el LI\V.T -~



e, . EERS . . ses e - o

2.4.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP provides

the program structure analvsis function., The SIAMP program reads the master
file and generates overall reports on the system under analysis to aid in mod-
eling that system and to provide information about the structure of that sys-
tem. STAMP provides five reports, as follows:

a. The external procedures report lists each module which calls sub-
routines outsige the set of modules being analyzed and the name of the sub-
routines called.

b. The structure chart shows the module call hierarchy of the system and
flags external and recu~sive subroutines,

c. The function list provid.s a 1ist of all task-level modules in the
system, with the name of the module, a brief description, and version informa-
tion.

d. The module list contains a directory of the modules being Ln1lyzed,
arranged in alphabetical order. It also contains an indicator to signal
whether the module is task level, subroutine level, or an unused entry point;
the top and bottom hierarchical level on which the module is called; a brief
module desciription; the version information; and the page number of the
source listing where the module is lccated,

e. The HIPO chart 1ists the name of the module, a brief module de-
scription, the version information, the page number of the source listing pro-
logue comments, and the variables input and output. The processing de-
scription in the HIPO chart includes the path segment structure of the module,
Each path segment contains the names of modules called, comments about the
path, three quantifiers (discussed below) and the sequence number range of the
source statements which make up the path segment.

The quantifiers are user-selected values (determined by the particular en-
coder used) extracted from the software being analyzed. Examples are ex-
ecution module timing, sourcez statement counts, and machine instruction
counts. Those items which are not available do not prohibit processing, The
STAMP program will report on the information available.

2.4.4 Software Profile Program (SCFTPRO). SOFTPRO provides the software

quality analysis function. SOFTPRO reads the master file and a software
standards file and generates two reports, as follows:

a. The software profile reports for each module list the violations of
sof tware standards as defined by the user in the software standards file. The
violations state the standard, the value for the software deing analyzed, the
pemmitted rarge of values, and the reference to the regulation from which the
standard is derived.

b. The profile summary contains the list of standards, the number and
percent of modules meeting each standard, the number and percent of modules
violating each standard, and the reference to the regulations containing each
standard. Additionally, quality values are summarized for all modules and
listed individually for each module.




s

2.4.5 System Structure Comparator (SYSTRUCT). SYSTRUCT provides analysis of
system configuration changes. OSYSIRUCT reads two master files representing
different versions of the software system under analysis. The SYSTRUCT report
lists changes in variables used by each module, changes in software quality
parameters (the ones reported by SCFTPRO), and modules which have been added
to or deleted from the current version of the software being anzlyzed. The
changes are of two types: those affecting executabie code and those affecting
code documentation., When changes affect executable code, a list of the mod-
ules changed (selection file) is generated for use by the patch analysis
program,

2.4.6 Patch Analysis Program (PATCHANA). PATCHANA provides a software patch
(source code change) analysis function, PATCHANA reads two master files or
subsets of master files representing two versions of the software being an-
alyzed. A selection file which contains a list of modules to be compared is
also read. Selection can be made interactively or via the selection file
created by SYSTRUCT. The report lists the path segment structure for both
vercions and indicates (with codes and arrows) the location of differences and
the type of change for each version, When structural differences occur, the
differences are flagged from their start either through the remainder of the
module or to the point where the structures of the two versions are congruent.
PATCHANA finds differences in structure, subroutine calls, use of variables,
and the three quantifiers,

2.4.7 PFA Library Routines (PFALIB). The PFA library routines are
MACROSPTTBOL routines that are used by the various PFA programs. The following
routines constitute PFALIB:

CENTER returns a given string centered wifhin a string of given length.
CLS clears the terminal (user's) screen.

DECR decrements the argument by one,

DT00 is used to convert decimal numbers into octal numbers.

tNOOUT prints the 'UNCLASSIFIED' caveat on the last page.

ENTER returns the next available channel aumber.

FIELD1 extracts a string of characters of a given length from a larger
string of characters, starting at a given character position, It also
trims leading and trailing blanks from the string it returns,

INCR increments the argument by one.

INIOUT performs initialization for QUTOUT,

ITMCMP determmines if an item is in a list,

LIST returns an item at a specified index. If the given index {s greater
than the index of the last item in the list, the last item is returned.

LSTADD adds a given item to the end of the 1ist,




LSTDLN deletes an item at a given index from a list,
LSTDLS deletes all occurrences of a (iven item from a list.
LSTFND returns the index of a given item in a list,.

LSTGET returns the itam at a given index from a list.
LSTINN inserts an item at a given index in a list,

LSTINS inserts an item bLefore another given item in a list,
LSTLEN returns the number of items in a list.

MAX returns the maximum of two real or integer numbers.

MIN returns the minimum of two real or integer numbers.
NODUP deletes duplicate entries fram a list,

OCTBIN returns a binary representation (cnes and zeros) of a given octal
number.

OTOD returns a decimal representation of a given octal number.

OUTOUT outputs a given Tine and provides the 'UNCLASSIFIED' caveat, page
numbering, and header at page breaks.

PAD returns a string of blanks of given length,
PRETRM trims leading blanks from a given string.

REWIND rewinds a file on a given channel and releases variables tied to
that channel,

ROUND returns a given real number rounded to two decimal places. It does
not affect integer numbers.

STROUT takes as many as the given number of characters, as delimited by a
comma, from a given string and places them on the returned string., The
input string is shortened by the number of characters in the returned
string.

SWAP swaps the contents of two variables.




SECTION 3. ENVIRONMENT

3.1 Fquipment Environment. PFA is currently implemented on a DEC VAX/VMS,
model 11//80. PFA software is resident on disk; software to be analyzed is
input via nine-track tape drives.

3.2 Support Software. PFA currently requires the following DEC software:

a, VMS, Version 3.0 or later
b. VAX FORTRAN
The following software from other sources is also required:

MACROSPITBOL, available from DEWAR Information Systems, Inc,, 221 West
Lake Street, Jak Park, iL 60302

3.3 Data Base. PFA uses two data files, the master file and the standards
file. The master file contains condensed/summary information on the program
to be analyzed. It is used by STAMP, SOFTPF), SYSTRUCT, and PATCHANA to an-
alyze and report on program structure, maintainability, and software guality.
The master file may be edited by using the system editor.

The stancards file contains information on software standards. It is used '
by SOFTPRO to calculate and report standards violations and by SYSTRUCT to
identify software yuality measures which have changed between two versions of
the software being analyzed.

3.3.1 General Characteristics. The following are the general characteristics
of the data base files:

3.3.1.1 Master File. The master file is created by system-specific encoders
(AUTOxxxx and CUMPRO). The master file filename is specified by the user at
run time. The user may specify any filename acceptable to the system, but, by
convention, the file extension is MST, The master file, or a subset, is used
by STAMP, SOFTPRO, SYSTRUCT, and PATCHANA to analyze and report on program
structure, maintainability, and software quality. Additionally, the master
file may be edited. The master file is read-only to all programs except the
editor, AUTOxxxx, and COMPRO. The master file is an ASCII sequential file re-
sident on disk storage. Records are fixed format, delimited by a carriage re-
turn/linefeed sequence, with a data length of 72 characters. The amount of
storage required varies with the application,

3.3.1.2 Standards File. The standards file-is created in two parts, First,
the developer of the encoder creates a file containing descriptions of the
basic standards, for which values are output by the encoder. Then, before run
time, the user adds descriptions of standards which are user defined in terms
of the basic standards. The standards file filename is specified by the user
at run time. The user may specify any name acceptable to the system but, by
convention, the file extension is STD. The standards file is used by SOFTPRO
to calculate and report standards violations and by SYSTRUCT to identify
software quality measures which have changed between two versions of the
program being analyzed. The standards fila is read-only to all PFA programs.




R

5:1

The standards file is a free format, ASCII, sequential file maintained on disk
storage. The amount of storage required varies with the application,

3.3.2 Organization and Detailed Description, The following is a detailed de-
scription of the database files.

3.3.2.1 Master File.

a. Layout., Figures 3-1 through 3-10 show the layout of the master file,
Currently there are eleven record types in the files (a header type and ten
data types). The eleven record types contain the following information:

Type Information
- Header Record
0 Library Routine Definition
1 Task or Subroutine Definition
2 Listing and Version Information
K] Prologue Comments
4 Path Definition
5 Subroutine Calls Information
6 Variable Information
7 In-Line Cumnments
8 Software Quality Information
9 Entry Point Definition

b. Groupings and Order, Within the master file, all the records for a
module are grouped together, Within each module group, the records have the
following order:

(1) A header record of the form: “#-H- modname", left-justified.
(2) A type 0 or 1 record, as appropriate.

(3) A type 2 record and, optionally, type 3 records. The type 2 re-
cord may appear anywhere within this group.

(4) The path information records are grouped together by path and
include type 4, 5, 6 and 7 records. Etach group defines a path, The de-
finition of a path includes the specification of a from node, or start point,
for the path, The groups are ordered sc that the from nodes specified by the
groups appear in the master file in the same order as the from nodes appear in
the progran 1isting, The records within the nath groups are ordered as fol-
Tows: The optional type 4 record must appear first, followed by optional type
5, 6 and 7 records, which may be intermixed.




(5) Optional type 8 records, in order.

(6) Optional type 9 records which may be intermixed with type 8 rec-
ords and/or path groups.

¢. Fields. See Figure 3-] through 3-10 for the layout of the fields de-
scribed in Table 3-1,.

3.3.2.2 Standards File,

The software standards file is used for comparing the software being an-
alyzed to specific standards,

a. lLayout., Each record in the standards file contains eight fields, each
temminated by a semicolon,

b. Groupings and Order. The records in the standaris file may be in any
order,

c. Fields, A sample standards file is presented in figure 3-11. The
fields are defined as follows:

(1) 1Identifier. The identifier has two ranges:

(a) 1 to 14, basic standard taken directly from the cor-
responding field on the master file type 8 record.

(b) Any other value.

Range (a) specifies which item of the software quality record the standard re-
cord describes, Range (b) provides scratch records for calculations or con-
tains identification and calculations for derived or calculated software metr-
jcs.

(2) String description. This is a brief description of the standard
(maximum of 40 characters) stated as the requirement needed (value) to
meet/pass the standard, for example: McCabe's complexity < 10 (meets
standard) -

(3) Weighting factor. This is an intager, zero or greater, which
gives a relative weight to each standard. Zero means the record is for
calculation only and is not reported. Numbers greater than zero rate the re-
Tative severity of violating the standard; the greater the number, the more
severe the consequences of the violation.

(4) Lowest permitted value. If the value supplied (or calculated)
for the standard record is less than the lowest permitted value, the standard
is violated.

(5) Highest permitted value. 17 the value supplied (or calculated)
for the standard record is greater than the higyhest permitted value, the
standard 1s vioiated.

(6) value or calculation, If the identifier is in the range (a)
above, then this field is left blank; otherwise, the field contains an expres-

10



X}

sion used for calculations. The expression must be in reverse Polish nutation
with a conma following each term of the expression. Terms which are enclosed
in parentheses are identifiers which are replaced by a value or calculation
from the standard record indicated by that identifier, Terms which are
numbers are used as constants in the calculations, The four arithmetic oper-
ators pemmitted are +, -, *, /.

(7) Code/documentat 9n indicator. This indicator is "C* if the
standard affects scurce code specific to a programming language or “D" if the
standard affects program documentation contained in comments,

(8) Standard reference. This field refers to the document where the
standard is found.

See figure 3-12 for the layout of the fields described in Table 3-11. The
sizes of all fields are variable. Null fields are indicated by two con-
secutive semicolons,

d. Provisions for Expansion. There are provisions for 14 basic standards
with up to 30 total.

11




RECORD TYPE

T MODULE NAME
)
1o
T MONTH
15
DAY
T YEAR
20  HOUR
T MINUTE
—_ MODULE DESCRIPTION
25
3
35
Lo}
3
50

DISK/TAPE RECORD LAYQUT

" SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 0O *

Figure 3-1.

12

MOGULE DESCRIPTION,
CONT.

=T T T O F T U T = O - A -

Library Routine Definition




RECORD TYPE

—_ MODULE NAME
)

10

T MONTH
15

DAY

T YEAR

20 HOWR

T MINUTE

NERE N

Lo
O

!

CHEE N NN NN

MODULE DESCRIPTION

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 1 *

—

5

(o]

__ MODULE DESCRIPTION,
CONT .

it irrit]

Figure 3-2. Task or Subroutine Definition

13




RECORD TYPE

PAGE NUMBER

| el |

SOURCE SEQUENCE
NUMBER

VERSION INFORMATION

gl it ittt

14

DISK/TAPE RECORD LAYQUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 2 *

50

" VERSION INFORMATION,
~ CONT.

LIt

Figure 3-3. Listing and Version Definition



RECORD TYPE

ST T T T T T T T T T T T T T4

PROLOGUE COMMENT

DISK/TAPE RECORD LAYQUT
SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 3 *

w
>

PROLOGUE CGMMENT,
CONT.

AT

=

Figure 3-4. Prologue Comments

15



l.l

RECORD TYPE

FROM NODE LABEL

LU T 0T ]

TO NODE LABEL

EIS T

QUANTIFIER 1

1111

START SEQUENCE
NUMBER

END SEQUENCE
NUMBER

11T IET]

BRANCH SEQUENCE
NUMBER

DISK/TAPE RECORD LAYOUT

SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 4 *

Figure 3-5,

16

5

(=]

QUANTIFIER 2

NN

QUANTIFIER 3

LI T8

Path Definition



DISK/TAPE RECORD LAYOUT

e

RECORD TYPE
S SYSTEM: PFA
L FROM NODE LABEL

t 3 FILE:  MASTER FILE
_ — RECORD TYPE: 5 *
. 10
- "~ TO NODE LABEL
! 15 50
é - ~~  SUBROUTINE CALL
p " LIST, CONT.
; CONTTNUATTON FLAG —
3 20 25
; ~ SUBROUTINE CALL —
. T OLIST _
f i) &0
e iy 5
] _ —
[ — RESEE
35 70
o
45
50

Figure 3-6. Subroutine Calls Information




A

|
\
.

RECORD TYPE

FROM NODE LABEL

LI T T ]

TO NODE LABEL

ST TTTIETTTIETTTIE T TS TS

VARIABLE LIST

DISK/TAPE RECORD LAYOUT
SYSTEM: PFA

FILE: MASTER FILE

RECORG TYPE: 6 *

o
o

VARIABLE LIST,
CONT.

LI T TTTI T

Figure 3-7. Variable Information

18



.oy

RECORD TYPE

FROM NODE LABEL

NN RENNERNREN

T0 NODE LABEL

LTI TTIIETTTIEITTIE T I T TS

COMMENTS

DISK/TAPE RECORD LAYOUT

SYSTEM: PFA

FILE: MASTER FILE

RECORD TYPE: 7 *

Figure 3-8.

19

o
Q

COMMENTS, CONT.

PISET IR T T TT I T

In-Line Comments




RECORD TYPE

| 1ol |

SOFTWARE QUALITY
PARAMETER 1

=N

SOFTWARE QUALITY
PARAMETER 2

=N

SOFTWARE QUALITY
PARAMETER 3

=

SOFTWARE QUALITY
PARAMETER 4

| 1]

SOFTWARE QUALITY
PARAMETER S

| 1g |

SOFTWARE QUALITY
PARAMETER 6

|18

SOFTWARE QUALITY
PARAMETER 7

|18l |

SOFTWARE QUALITY
PARAMETER 8

NN

SOFTWARE QUALITY
PARAMETER 9

wn
WEN

SOFTWARE QUALITY
PARAMETER 10

DISK/TAPE RECORD LAYQUT

SYSTEM:
FILE:

PFA

MASTER FILE

RECORD TYPE: 8 *

52

BN

SOFTWARE QUALITY
PARAMETER 11

o
NEN

SOFTWARE QUALITY
PARAMETER 12

NEN

SOFTWARE QUALITY
PARAMETER 13

l ~J|
O

SOFTWARE QUALITY
PARAMETER 14

Figure 3-9.

20

Software Quality Information




DISK/TAPE RECORD LAYOUT

l

RECORD TYPE

SYSTEM: PFA

ENTRY POINT NAME

) FILE:  MASTER FILE

_ RECORD TYPE: 9 *

10

LIk

15

_ ENTRY POINT

_ DESCRIPTION,
CONT.

z

START NODE LABEL

ENTRY POINT
DESCRIPTION

IR TS T TSt T |8

w\n £ w (98] N
[ (@) w o |

Figure 3-10. Entry Point Definition

21




0L anbojoud wouy dup| Juauwwod aug £ juauo) anbojodyg

(VNYHOLVYd “0¥d140S uoijeuojut uojjeuuOoju]
LS CLONYISAS “dWY1S) NMOISYIA uois.aaa 3|npow |euoyidp 2 UoiSsJap
buiysty
(YNYHOLYd “0¥d140S) b3S 924N0S uj 3| Npow JO 3Jeis Jaquny
66666666 ‘0 8 (19nY1SAS *dWy1S) D3ISIUSL 30 Jaqunu aduanbas leuoyadg A 35u3anbag auunos
(VNVHOLVd *0Y¥4140S) 39¥d  Bulasy) Japoous up a|npow jo
66666 ‘0 S (1ONYISAS “dWY1S) 39¥dl 3Je1s jo Jaqunu abed [euopidg 2 Jaquny abe
—_ (VNYHO1IVd “0¥4140S) 2530 a|npou jo uoL3daodsag
. 0S (1oNY1SAS “dwvl1S) 2s3al uot3diaoasap jaruq |euoyidg 1° 3| Npon
65-0 2 pasn joN I ‘0 FINUIN
N
£2-0 2 pasn joN 1 ‘0 JNOH
66-0 2 pasn 0N 10 Jeaj
1€-1 2 pasn joN 1°0 Aeq
AR 2 pasn joN 1° Yjuoy
(snbgun
VYNVHOLVd ‘04d140S) IWYNOOW 3q 3snw 3ng) Auessadou 4!
0T  (1ONYISAS *dWVIS) IWVNISYL paiesunsl ‘aweu 3|npoy 10 aweN a(npow
(YNVHOLYd) @)
26,°°° x1,* 50, 2 (LONYISAS “dWYIS) 3dA1D3Y 2dA3 puodau sajouag 6-0 adf] puoday
J9NVY 3218 (SWY¥904d) S9Y1 350dund # Q¥0o3Y JWYN
REDE!

NOT1dI¥3S30 01314 3714 ¥3ISYW °1-€ 374Vl

- w o




UoL3eNULIU0D (<
uoj3enuiiuod
e JO0N Q=

Jaquinu |ead
J0 Jabaju]

J43qunu | eadJ
J0 J43633ul

66666666-0

66666666-0

66666666-0

Jaqanu
Leas4 40 43633u]

J1J43qunu
Jo eydy

JjJawnu
10 weyd |y

JINVY

o1 (YNVHO Lvd
ot (YNVHI 1vd
8 (YNVHO Lvd
8 (YNVHO 1Vd

8 (YNVYHO LVd

0t (YNYHD 1Vd

(19nY1SAS) INOD

‘dWY1S) €INVND

‘dWY1S) 2INVND

‘dWVIS) dWrD3s

‘dWv1S) aN3D3S

‘dWv1S) 1¥1S03S

‘dRVIS) 11nvnd

8 (YNVHO Lvd *dWV1S) 0L

8 (VNVHILYd “dWYIS) WOYd

———

3Z1S
1314

(Q3INNIINDD) SNOILdI¥ISIA Q1314 3714 YIISVW

le

(SWv¥904d) SIvi

paed g adA3 snojaaud
9yl JO uoijenuiluod
3yl st pJed g adhy siy3
Jay3iaym buriesyipuy pratd

J5pooua
03 J3pPOJUd WOJ) SItJep
*Jajjijuenb yjed |euoyidg

J3poouad
03 JOPOIUd WOJ} SA}JEA
*J43tjtauenb yjed (rvuoyadg

paJJajsuedy s} [0J3u0d
yoym 03 juauwbas jo Jaqunu
3ocuanbas adunos |euotidg

yied jo pua jo Jaqunu
aocuanbas dd4nos (euoyidg

yied jo 4e3S JO Jagunu
aojuanbas asunos |euoyidg
yjed jeuoyidp

PRJJ3dsSuRI] S| |O0JJUOD YO|yM
03 Juawbas jJo (aqei 3Je3s

weaboud up juawbas yjed jo
jujod j4e3s 6upalb |aqe)

L=y

(v

3504ind

*1-C 38vl

# 04023y

bey 4
uojlenuiiuog

€ J43ti(3uenp

2 J3tjruenp
Jaquiny
asuanbag youed gyl

Jaquny
aJuanbag pu3

Jaquny
3aojuanbag juels

1 J3tJ1juend

13qe]
3puN 0]

13ge]

9pON wod 4

3WYN




0t

0t

g
Y3IpIM
40 youa

SPL3tJ
Jabaju] vl

¥s

14

£S

ZIs
41314

I9NVY

(YNVHD1vd) 3QONIS
(dWV1S) JUONLYVIS
(YNYHOLVd “dWVIS) NI

(VNVHO1Yd) 3WYNOOW
(dWV1S) IWYNNSYL

(0¥d140S) $1S3anTWA
(10NY1SAS) 83dAL
(dWV1S) INIWWOD

(YNVHOIVd “dWVI1S) T08WAS

(1onY1SAS) 1011
(YNVHOLVd “dWVIS) N1¥8ns

(SWY¥90ud) S9vL

PaJuUaJdjaJ 3| qejJeA |

spou

Je3s juiod Asjua jo |agei

sJeadde jugod Asqua
Yd{ym u} apnpow J0 awep

Kaessasau J| pajedunyy
‘Jujod A13ua Jo aweN

JBpoJud 03 Japooud woJd) AJea
uaaLb ssajawesed (enjoe ayy
‘athpouw s{yy Joj Ja3jdweded

£3ilenb asemyjos awos jo

anleA ay3 saapb p1ajy yoe3l

9JJN0S WOJJ JUBLMWOI BU|[-u]

Pa3isal aqejaeA jj
pau}jap ajqejJen i
PatJLpow ajqejJeA jy

1
a
W
Y

:sJeadde uo|02 puolas
3yl J33yy °adAy apqeruea

leuoi3do ayy Jgeadde Aew wo |09
ISJE) 943 493y °SUO|GI oM}
AqQ pamo| |04 S| Buru a|qerJea

3yl “3Juawbas yjed uy

bujseadde sajqejsea jo sy

*sewwod Aq pajeuedas ade
siLie) *3jusuwbas yjed uy
SL1®> 3ujInoaqns jo 3si1

350dund

(G3NNIINOD) SNOILdIYIS3A G314 3714 Y3ISYW  *I-¢ 378Vl

2
-

# 04023y

taqe
3poN 3Je3s
TR

duey
jutod AJju3l

SJajaueJde
A3gend
aJem] Jos
JuawW0 Y

<
o~

st
31qeaep

ISET LLe)
aulinu.qns

3WYN



914 SPJAepUR]S BUBMIJOS *[[~E 34nby 4

131913 MIAN ‘'243!1S Q0T T 01 °AIA IUNINIS'TL
IYNLINYLS '94F 'S 'C T 'O N(IYNLINYLS NMOA dOL) LNMCHOTIAIA IuNINS 'O1

TALIXITGWOD ‘QdR D! "= (¥} *+€) 001 10T 'O0TD> SUINIIILYLIS NOILIVHVIIIQ J0 HIGHNAN'YA
¢ OTIXIT4W0D DdI D= CIw) (E) OG0T 108 D SLINIILVIS NOLLYNYIDId JO HIGHNN'T
TALTXTNAHAD "DdI ‘D= '(¥) LE) 'QT 0T IGT > SINIILVYLIS NOILvyvIIIq 40 HIGWNN'L

ALIXI o0 ‘OdI'D! “+ (L) '+ () ‘(1) '00C "1 '00€ > S3NIT JO HIUWNN'M
TALIXITAWH0D ‘0943171181 6T °F *1'0C > ALIXIIMOD S, 3GvIIN°'D

FALIXN3NHWOD OIS T IT 02 > ALIXITIMOD S, 3aVIIN‘A

ALIXITAWOD D43 1276 T 10T > ALIXITSMOD S, 38YIIH'S

'IHNLINYLS '2dI 'S '€ '010°'C > ALIXITJWOD SLONU'S

TALIXATNGUOD ‘943 'D e 110 IS > ALIXINIWOD SAVILSITIVH !

‘CEC SLFT-TUS-TIWD 11011 'l @ SINIOJ AYINIG JO ¥3AWNN-©

TV CALI-TASTITUA /(YD) e 00T "+ Q) (T) ‘846464 '00T ' 'TIUINIHWHOD 300 XOOT ‘3
'NOILVLINIHNDOG ‘OdI3 Q7 ‘(¥ "0 Q01 '+ "(C) *(T) "6465664°CL ' 'JIINIMIOD 3Q0D XCL°Q
'NOTAVINIWND0A 'OdI Q7 (¥} '» 001 '+ '(C) “(J) 644464 '0C ' 'IINIRIOD 300D X0C D
INOTLAVINIWNNIOG ‘Dd3 A’ ‘65646460 10 'SINIWKOI GIQFIMII HLIM SANRILVIS SO0 ¥IGUWAN'C
£ °'C € '6491-ALS-T1IK!A ' '00Z 10T '00Z > SANGWILVLS ITAVINIAXT I HIGHNN'Y

1101 '6664 10 1O'SINITT ININHOI-NON ) YIGUNN'C

'NOTLVLINAINIOG ‘OdI Q' '46464 ‘010 'SINIT ANIHWOD WNYIE-NON ) ¥ITWNN'S
NOTAVANIHN20Q 'Sd3:Q (1) ‘644403112031 < 30 Hd NI SINIY INRKOD ‘G
INOLLVININNDOQ ‘0d3 Q' (1) 16064646 109209 < OUNHd NI SIMNIT LHMUQI 'Y

Y P 'HLFT-ALS-THIH ‘A 16646 '0C 1E0C € 900Ud NI S3INITH ANIII0D ‘Y

25



¥

IDENTIFIER

.
1]

DESCRIPTION

.
b]

WEIGHTING FACTOR

.
3

LOWEST PERMITTED
VALUE

.
1]

HIGHEST PERMITTED
VAL UE

DISK/TAPE RECORD LAYOQUT

SYSTEM: PFA

FILE:

STANDARDS FILE

VALUE OR
CALCULATION

.
L]

CODE/DOCUMENTATION
INDICATOR

.
3

Figure 3-12.

26

STANDARD REFERENCE

Software Standards File Records




uotjes
-uauns0q Q=
apo)y J=

Jabaju]

Jabajul

3J0day

jou og ¢©=
JJoday 1=

JINVY

(0¥d140S) 3DONIY3I4Y

(0¥d140S) 3002200
(10NY1SAS) JI14INDIS

(0¥d140S) ydx301$
(12nY¥1SAS) N3AID

(04d140S) TWAHYIH
(1ONYISAS) TVAXVW

(0¥d140S) TWAMOT
(10NYLISAS) TWANIM

(1ONYISAS ‘0Y¥d140S) 1H9IIM

(0¥d140S) ¥2S3001S
(1onYISAS) 1d1¥IS3a

(0¥d140S) 139vI04S
(10n¥1SAS) x0I

(SWyy90ud) S9vl

*(0p 30 3ZLS wnwixew) pautjap st pJepueis paqLJ4as3p 3y}

yoym uy ydeabeaed pue Juawndop ay3l 03 9ou3JI3 3y

°*pJPpUR]S UOLIRJUSWNIOP ® JO pJEPUR]S IPOD
® SL pJepuels paqrJosap syl jeyy burjesppuy bepd

(§°e°€°¢ wordas aag) <,/ (1)

‘(6), st uorssaudxa (eba| e ‘a|dwexa 4oy *Sasayl
-uaJed ul @I s,pJepuels ayj Aq paduauaad *spaepuels
pautjap A snotaadd jo sanjea ayy pue *,/, pue

“oxy Y4y f 4, SJ0jRJadO BY3 *SIURISUOD JO ISELSUOD
Aew pue uopjejou ysi|od 3suaAdJ Uy St uossaJdxa
9yl °spJepuels J1Seq JOJ ||NN “SpJepuRlS pautjap
-J3sn 4o an|eAa ayl bugjendoieds Joy vopssadadxd uy

*pJepuels
sty3 Joj abueds ajqeidadsde ayy jo pua aaybry ayj

*pdepuels
siyl Joy abueds aqeirdasde ayy jo pua aamo| ayl

*pajenared K{a43w JO
pajJodaJ 3q 03 St pJepuels J4ay3aym Burjedipuy bej4

*(0v 30 8zts wnwixew) pJepueis ayl Jo uoiIdydIsap y

*spJepuels paulyap Aisnotaaud jo suuaj uy
paje(nd|ed s} anfeA 9SOUM pJepuels K pau}ap-dasn,
e 30 st uop3diaosap ayy ‘snpea Jayio Aue st Qi

U3 JI  "9lJ Jajsew 3yl uL paJols pue JAPOIUI Iyl
Aq paje(nd|ed SI an{eA 3Soym pJepuers e *paepueis

wJ1Seq, © JOo st woy3diaosap ay3 ‘pl-1 woay pue dpudwnu

St QI 8yl 31 °sJ4ajoeueyd (p) Jnos jo wnuwixew
tuoydiaosap paepuels o uotjedtjijuapy anbruf

350dynd

NOT1dI¥3S30 07314 3714 QUVANVIS °1I-€ 378Vl

o

| —

CRITENERRN
pJepuels

Jo3ed1pul uoty
-B3U3LNI0(Q /2P0)

uorjenoie)

anjep
P333tuudd 3IsaybLy

anjep
Pa13twad 3samo R

Jojoey4
bupaybiron

uo§draosag

Jatjiuap]

INVN




SECTION 4, PROGRAM MATNTENANCE PROCEDURES

4.1 Conventions.

4.1.1 Namning Conventions. The following conventions were used for the as-

signment of mnemonics.
a. Counters usually begin with "N" or contain "NUM'.

b. The mnemonics “RL" and "RP" are used for report file line and page
count, respectively.

c. The variable “TRUE" is set to 1; “FALSE"™ is set to 0.

d. Mnemonics which specify input/output channel numbers end with "“CHNL"
or “CHNNL".

e. Mnemonics which have to do with batch processing mode start with
"BAT".

f. Variables used in the report file interface may contain "REP".

g. Variables and subroutine names containing “STD" are used in processing
standards records.

h. Variables and subroutine names containing "MOD" are used in module
processing.

i. Variables and subroutine names containing “OUT" are used in output
processing.

J. Variables and subroutine names containing *MST" are used in master
file processing or to indicate that data come from a master file.

k. Variables and subroutine names containing “STK" or “STAK" are used for
stacks,

1. Vvariables and subroutine names containing "NSW" refer to a new ver-
sfon,

m. Variables and subroutine names containing "OLD" refer to an old ver-
sion.,

n. Variables containing "TTY" (e.g., TTY, TTYIN, TTYNOCR) refer to user
termminal,

0. Variables containing "ARND" or "EXT" are exit points for local control
structures,

4.1.2. Commenting Conventions. Figure 4-1 is an example of the conventions

used in PFA source. In general, all comments and code for a module must be
grouped together within the source file, A description of the conventions
used within a module follows:

28



»
-
.
(2
N

£ ) 3 P w T 9 ox 7

v

e

DR SR I S ]

T 9 P Y Mmoo wm s P e A s oo

LI N L W

-
L
[

P

¢y VS

CAaLLS LIST

“""O“b.‘...".‘..l’.l..'....Q.’.Q.’Q‘."Q’.’..<-’QQ’O'...'..’....."’
[

QUGRENYT INE READSTD - READ STANDARDS FILE L)
[

PHRPOSE -
.

READSTD READS THE STANDARDS FILE AND STORES THE INFORMATION FOR .
THE BASIC STANDARDS IN THE STANDARDS TABLE. ¢

.

ALl READSTD () -
*

WARIADBLE LIST -
.

crse - STANDARD DESCRIPTION -
51V - EXPRESSIDN FOR CALCULATING STANDARD -
DX -+ STANDARD LABREL AND INDEX INTD STANDARDS ~ TABLE *
MAXY - MAXIMUM VALUE TO MEET STANDARD -
MINY - MINIMUM VALUE TO MEED STANDARD .
SIGNIF - FLAC INDICATING WHETHER A CHANCE IN THE VALUVE OF -
THIS STANDARD SIGNIFIES A CODE OR [OCUMENTATION L)

CHANGE IN THE MODULE (=C, D) .

STANDARD -  INPUT VARTABLE FOR STANDARDS FILE L]
STD - &EE STD DATA STRUCTULRE L]
STOREL - STANDARD TABLE ENTRY .
S1DTAD - STANDARDS’ TABLE 3
TEMP = INPUT RECORD FROM STANDARDS FILE .
WweT - FLAG INDICATING WHETHER CURRENT STANDARD 1S TO BE *
REPCRTED .

.

=20 ~ DO NOT REPORT -

20 - DO REPIRT -

»

FILES USED. .
. -

STAMDARDS FILE ~ FILE SPECIFYING PRCSRAM STANDARDS .

*

»

-

(YT YRR YR R L R TR S 2 R TR T R R R 2R R LSl Rl el Al addiadddsd)

XY 2 XX

ACAD REZORD AND CATHER DATA \i~1,E

INPUT. STANDARD IP, TEMP: ST, DESC: ST. WGT: ST, MINV: 5T, MAXV: ST,
21V ST. 31CNIF ST, IDX: ST. STOREC: STD
0UTPUT N IN., TEMP ST, IDX: ST, DESC: ST, WCT: ST, MINV: ST. MAXV: ST, 8IV: 5T,
SISNIF ST, STDREC: 57D, IDX: IN, STDTABIIDX>: STD, STDTAB: TA
CALLS. L1IST

LEY X XY

EADZTD N =D
STDTAD = TADLE (17)

51 TEMP a STANDRD . F (RETURN)
10X = LIST(TEMP. 1.’ ")
DESC = LIST(TEMP. 2, ')
WGT = LIST(TEMP.D, ’i *)
MINY = LIST(TEMP, 4, )
MAXY = LIST(TEMP, 3, * %)
GIV = LIST(TEMP . &, *; ")
GIGNIF = LIST(TEMP, 7, ' ")
STDREC = STD(DESC, WGT, MINV, MAXV, TV, NULL, SIGNIF)

TEST FOR BASIC STANDARD. STORE INFORMATION FOR RASIC STANDARDS
IN STANDARDS TABLE. SKIP USER-DEFINED STANDARDS.

IDX = CONVERT(IDX, 'INTECER ") :F(RS1)
3TDTABIIDX: = STDREC : {RS1)

Figure 4-1. A Sample PFA-Commented Source Program

29




QO;

a. Prologues

(1)
(2)

Each module has a prologue.

The prologue is delimited by asterisks. This means that the

prologue must be preceded and followed by a line consisting only of a string
of asterisks and that each line in the prologue must begin and end with an

asterisk.

(3)

(4)

(5)

Every prologue contains as the first non-blank line:
TASK

SUBROUT INE : <name> - <description>

LIGRARY ROUTINE

where, if the module has multiple entry points, name is the name
of the first entry peint.

Following item 3 is the module description:
AUTHOR:

DATE STZRTED:

DATE LAST MODIFIED:

PWRPOSE: <function of module>

DESCRIPTION: <general design description>
CALL:

PAkAMETER LIST: <parameters and descriptions>

USER-DEFINED DATA STRUCTURES: <structures. fields and de-
scriptions>

VARIABLE LIST: <variables and descriptions>
FILES USED: <tile names and descriptions>
CALLS:

L IMITATIONS:

ERRORS:

as there are appropriate data to include,

For each additional entry point the module contains, (4) above

ts followed by:

30



CEEW L

YT T

» . Y Badn Bee R . EPRVTYL T T et v W e

ENTRY POINT: <name> - <description>
and again, as many of the items in (4) above as appropriate.
b. In-Line Comments

(1) A1l in-line comments begin with an asterisk and are separaied
from code by strings of asterisks.

(2) In-line comments do not contain ' ',

(3) The in-line comments may contain pseudo path segment
cpecifications. These specifications document the flow of control in a module
and are used by COMPRO, the comment processor, and STAMP to create HIPO
charts, If used, the path segment specifications have the following format
and meaning:

(a) The specification for a path segment begins on the first
comment to be included in the segment.

(b} The specification is the rightmost item on the comment
line,

(c) The specification is of the form:

{m-1[n1,n2,...](E]

where m is the optional node label for the start of the path
segment, ni are the optional node labels to which the segment branches, and E
indicates branch to exit, If the from node label is null, the from node label
will be assumed to be the current node count for this module. Tf the to node
labels (including E) are null, the to node label will be assumed to be the
current node count for this module plus cre., If this path segment is an entry
point for the module but is not the first entry point to the module, m must be
the name of the entry point.

(d) The last path specification in a module has a to node
specified.

(4) A1l referenced and modified variables appearing in a pseudo path

segment are listed in comments within the path segment for use by COMPRO and

STAMP, If there is no path segment specification, all referenced and modified
variables for the module are listed. Comments listing referenced or modified
variables have the respective formats:

INPUT:  varll:typel,var2{:type],...vari[:typel,

...varnf :type]

31




OUTPUT: varl[:type],var2[:typel,...vari[:type],

.eovarnf :typel

where type is optional and is an abbreviation for the variable type.

TYPE

String

Integer

Real Number
Pattern Structure
Array

Table

Created Name
Unavaluated Expression
Obiec: C.le
Programme ~ lefined
External

Tnpug

Output

In the case of SNOBOL the types are abbreviated as follows:

ABBREVIATION

ST
IN
RE
PA
AR
TA
NA
UN
co
Data type name
EX
Ip
op

Several lists may be included in one path segment.

(5) A1l subroutines called in a pseudo path segment are listed in

comments within the path segment for use by COMPRO and STAMP, 1If there is no
path segment specification, all subroutines called in the module are listed.
Caonments listing the calls have the format:

CALLS: calll, call2...calli,

L]

32



.s.calln
Several lists may be included in one path segment.

4,2 Verification Procedures. Large master files should be used to test the
performance of the PFA programs. Master files should contain all possible
‘nputs which affect the PFA program being tested. Master files for testing
can be generated by running an encoder on a representative sample of software.
The resulting master file can then be edited to add the necessary features for
the test.

4.3 Error Conditions.

4,3.1 COMPRO. COMPRO indicates the following errors:

a. Massage: "ERR10: ERROR PROCESSING LINE IM MODULE “

I|<‘I1’ne>ll

This means that COMPR0 has found a Tine in the PFA source with an un-
expected format. The message indicates an error within COMPRO, and
processing terminates,

b. Message: "ERR20: UMEXPECTED END OF FILE IN MODULE "
This weans that COMPRO has found an end of file while reading a multi-
line 1ist. The message indicates an error in the PFA source. Process-
ing terminates.

4.3.2 STAMP AND PATCHANA. These programs display the following:

Message: “BAD MAP FOR "

This means that there is a to label without a corresponding from label or
that the from or to label is null for a path datum in the master file.
This resuTts from incamplete path structure generated by the encoder or
from dead code in the source code being analyzed.

4.3.3 SOFTPRO. SOFTPRO has the following error conditions:

a. Message: “STANDARD REFERENCE IN STANDARD LINE " 1S NOT FOUND

This means that a standard reference in the calculation field of the
indicated line of the standards file cannot be found.

b. Message: "IN STANDARDS FILE, ERROR IN SPECIFYING CALCULATION FOR
STANDARD LINE )

This means that the calculation field of the indicated line of the
standards file is in error.

33




€. Message: “IN THE STANDARD FILZ, LINE SPECIFIES A CALCULATION
FOR A BASIC STANDARD"

This means that for the indicated line in the standards file, the
standard number is between 1 and 14, indicating that it is a basic
standard, but the calculation field contradicts that by providing a
calculation,

d. Message: "IN THE STANDARDS FILE, LINE SPECIFIES A STANDARD WHICH
IS NOT BASIC BUT IT HAS NO CALUCLATION"

This means that for the indicated line in the standards file the
standard number is not between 1 and 14, indicating that it is not a
basic standard, but there was no calculation using basic standards
included in the calculation field.

4.4 Special Maintenance Procedures. The normal procedure for executing a
MACROSPTTEOL program is to invoke the MACROSPITBOL interpreter with the com-
mand line: § SPITBOL <filename>.SPT. To save execution time PFA uses the
MACROSPITBOL feature of having the source code preinterpreted into a SNOBOL
executable file which can then be loaded and run. (See EXIT(-1) in
MACROSPITBOL Manual.) To facilitate the use of PFA, two command procedures
are required in the user's LOGIN.COM file, The first one is a comnand to com-
pile PFA programs: $§ C*OMP :== $SYSSSYSTEM:SPITBOL/LOAD=PFAEDT NL:. This
command (compile) can then be invoked by typing “C" or “COMP" by the user from
command level, The command will then load and run a special PFA preprocessor
called PFAEDT which processes (creates a MACROSPITBOL program) PFA source code
and expands the "Included" files. PFAEDT then calls on the MACROSPITBOL
interperter with the processed file, which then creates the saveable
<filename>.SEX image file. The second command entry is $§ PFA :== $SYS$SYSTEM:
SPITBOL/LOAD=PFAINI NL:. This command, once in the LOGIN.COM file, is invoked
by typing “PFA" at the command level. The command will then load and run a
program called PFAINI, which presents a menu and asks for the PFA report
program the user would 1ike to run. PFAINI will then load and run the re-
quested program which had been created by the compile command.

The programs PFAEDT.SPT and PFAINI.SPT used in the command procedures ((
and PFA) must be compiled into loadable modules by the normal procedure out-
lined above. The rest of PFA can be compiled and run using only the C and PFA
cammands once they have been installed.

4.5 Special Maintenance Programs. None required.

4.6 Listings. Voiume II, Appendix E, contains all program listings.

4.7 Software Failure Report Summary. The following is a summary of the ex-

1sting known software failures and deficiencies:

34



4.7.1 OQOverall PFA. In list processing most 1ists use commas as item de-

Timiters. However, lists of variables may include multi-subscripted array

names which contain commas. It is suggested that percant signs be used in

place of commas as primary list delimiters and that all subroutines used in
1ist processing get as input the delimiter to be searched for.

4.7.2 STAMP.

a. READPATH uses start nodes to determine which subroutines are called by
a task and its entry points, respectively. However, it assumes tha. a task's
starting point will always be the first entry in the path table. This is not
always the case: 1i.e., QUTOUT., It is suggested that the entry points in the
structure have the same name as in the routine,

h. When outputting comments to HIPO charts, if the comment must be
truncated, STROUT either truncates after the last comma or returns a null if
there are no commas. Associated logic in OUTPATH may cause the assocated line
of input variables to be lost. It is suggested that a separate routine be
written to handle text.

4,7.3 PATCHANA,

a. If a module structure change is found, it is 1ikely that everything
after the structure change will be flagged because the structures of the two
versions of the module will be out of synchronization. It is suggested that
the PATCHANA program be changed to apply pattern matching to the structural
patterns between parts of the two versions of the module being analyzed to de-
termmine the exact extent of the change in structure and to restore synchron-
ization between the two versions so that additional structural changes can be
identified. A percentage should also be calculated to indicate the amount or
scope of the change.

b. PATCHANA does not recognize multiple entry points. This feature must
be added.

4.8 Future Program Improvements., The following program improvements have

been suggested but are not currently implemented.

4.8.1 Master File, In general, changes in the format of the master file will

affect all PFA programs and encoders.

a. A new record type "D" should be defined for definition of global data,
similar to labeled and blank commons in FORTRAN. This would provide better
data tracking between modules.

b. Establish variable use codes for the variable records (type 7 records)
as follows:

"D" - defined in an unexecutable statement
"M{C]" - modified, may be conditional

“R{C]I" - referenced, may be conditional

35




“T(C]" - tested, may be conditional

“(L]" - loop control, suffix to above
“fU]" - undefined prior to use, suffix for above
Cc. A new record type "A" is needed to encude the algorithm used on the
path segment in such a way as to allow theorem provers to be used where pos-
sible.
4.8.2 STAMP,

a. Names of modules of “blank common* and “labeled common* should be'
included in the module 1ist and processed as modules.

TYPE OF MODWLE NAMING CONVENT ION TASK/SUBROUTINE CODE
Blank common /*/ or /[ / D

Named common /name/ N

Executable routine name S, T, E

Commons may or may not be listed in the structure chart but will be listed
in HIPO charts.

b. Version information should be deleted from the module 1ist and be re-

‘ ® placed with counts of subroutines calling each routine at each level of the
subroutine hierarchy.

36



APPENDIX A

TERMS AND ABBREVIATIONS




COMPRO
DEC
DECUS

Encoder

External procedures

HIPO
HIPQO chart

MACROSPITBOL

Master file

Module
Node

PAT CHANA
Path

PFA
PFALIB

Program structure

Quantifiers

RATFIV

TERMS AND ABBREVIATIONS

Comment Processor.

Digital Equipment. Corporation,

DEC User Society.

A program which reads the source code for the system
being analyzed and creates a master file for use by
other PFA programs,

Procedures which exist outside of the software being
analyzed, e.g., operating system utilities.

Hierarchy plus Inputs, Processing, and Outputs.

A chart relating inputs and outputs to the processing
algoritmm which uses or creates them,

A SNOBOL4 compatible interpreter for the VAX.

The file which contains a representation of the
attributes of the software being analyzed,

A separately compilable procedure or subroutine.
A point of decision in execution path selection,
Patch Analysis Program.

A segment of instructions which does not contain any
branches.

Program Flow Analyzer.
PFA Library,

Graph of the sequence of all possible paths which may be
executed within a program,

A value which quantifies or totals some attribute on a
path,

A structured FORTRAN translator.




TERMS AND ABBREBIATIONS (Cont'd.)

SOFTPRO Software Profile Program.

Software patch A change in source code.

Software system Consists of one or more computer programs which perform
one or more related functions.

STAMP Structure, Timing, Analysis, Modeling Program.

Standards file File which contains user-entered standards in a

prescribed format,

Structure chart Shows a subroutine call hierarchy in the form of a tree
graph,

SYSTRUCT System Structure Comparison Program.

TECOM Test and Evaluation Command.

USAEPG U.S. Army Electronic Proving Ground.

A-3




